1\defineenumeration
2 [theorem]
3 [alternative=serried,
4 width=fit,
5 distance=\emwidth,
6 text=Theorem,
7 style=italic,
8 title=yes,
9 titlestyle=normal,
10 prefix=yes,
11 headcommand=\groupedcommand{}{.}]
12
13\defineenumeration
14 [lemma]
15 [theorem]
16 [text=Lemma]
17
18\defineenumeration
19 [proof]
20 [alternative=serried,
21 width=fit,
22 distance=\emwidth,
23 text=Proof,
24 number=no,
25 headstyle=italic,
26 headcommand=\groupedcommand{}{.},
27 title=yes,
28 titlestyle=normal]
29
30\starttext
31
32\startalignment[flushleft,tight]
33\bfb\setupinterlinespace Proving the lHospital rule directly from the Lagrange mean value theorem
34\stopalignment
35
36\blank[big]
37
38\startlines
39Anders Holst
40Mikael P. Sundqvist
41\stoplines
42
43\blank[big]
44
45\startnarrower[2*middle]
46 \bold{Abstract.} At our firstyear calculus course for engineers we discuss Lagranges mean value theorem but not Cauchys mean value theorem, and for this reason we usually give a weak form of lHospitals rule on limits. In this note we give a simple proof of the stronger version of lHospitals rule, using only Lagranges mean value theorem and elementary results on limits and derivatives.
47\stopnarrower
48
49\blank[big]
50
51We formulate and prove the lHospitals rule for onesided limits. This in fact
52strengthen the usual formulation slightly.
53
54\starttheorem
55 [title={lHospitals rule},
56 reference={thm:lHospital}]
57 Assume that the functions \m{f} and \m{g} are continuous in \m{\rightopeninterval{a,b}} and differentiable in \m{\openinterval{a,b}}. Assume further that \m{f(a) = g(a) = 0} and that \m{g(x) \neq 0} in \m{\openinterval{a,b}}. If \m{f(x)g(x)\tendsto A} as \m{x \tendsto a}, then \m{f(x)g(x)\tendsto A} as \m{x\tendsto a}.
58\stoptheorem
59
60A geometric interpretation of the lHospital rule goes as follow. In the \m{uv}plane, draw the curve parametrized by \m{u=g(x)} and \m{v=f(x)}. Then the direction coefficient \m{f(x)g(x)} of the secant (dotted in \in{Figure}[fig:lHospital]) connecting \m{(g(x),f(x))} with \m{(g(a),f(a)) = (0,0)} should approach the same value as the direction coefficient \m{f(x)g(x)} of the tangent to the curve at \m{(g(x),f(x))} (dashed in \in{Figure}[fig:lHospital]) as \m{x} approaches \m{a}. Our proof of the theorem uses that we can parametrize this curve locally around the origin as a function graph \m{u=t} and \m{v = f(g{1}(t))}.
61
62\startplacefloat
63 [figure]
64 [location=top,
65 reference=fig:lHospital]
66 \startMPcode[offset=1TS]
67 numeric u ; u:=7.5ts ;
68 path p,tangent,sekant ;
69
70 p:=(0,0){dir 10}..(1.5,1){dir 50}..(3,2) ;
71 z0 = point 1 of p ;
72 tangent:=(((-1,0)--(1,0)) rotated 50) shifted z0 ;
73 sekant:=originz0 ;
74
75 drawarrow ((-0.25,0)--(3,0)) scaled u ;
76 drawarrow ((0,-0.25)--(0,2)) scaled u ;
77
78 pickup pencircle scaled 1 ;
79 draw p scaled u ;
80 draw tangent scaled u dashed evenly ;
81 draw sekant scaled u dashed withdots ;
82
83 dotlabel.ulft("\m{(g(x),f(x))}", z0 scaled u) ;
84 dotlabel.lrt ("\m{(g(a),f(a))}", origin) ;
85 label.bot("\m{u}", (2.9u,0)) ;
86 label.lft("\m{v}", (0,1.9u)) ;
87 \stopMPcode
88\stopplacefloat
89
90The only place in our proof where Lagranges mean value theorem occurs is
91in this useful property of righthand side derivatives.
92
93\startlemma
94 [reference=lemma:rightderivative]
95 Let \m{c > 0}. Assume that \m{\phi\maps \rightopeninterval{0,c} \to \reals} is continuous in \m{\rightopeninterval{0,c}} and differentiable in \m{\openinterval{0,c}}, and that \m{\lim_{t \tendsto 0} \phi(t)} exists and equals \m{A}. Then
96
97 \startformula
98 \lim_{h \tendsto 0} \frac{\phi(0 h) \phi(0)}{h} = A.
99 \stopformula
100\stoplemma
101
102\startproof
103 For \m{h \in \openinterval{0,c}} the differential quotient \m{(\phi(0 h) \phi(0))h} equals \m{\phi(\xi_h)} for some \m{\xi_h \in \openinterval{0,h}}, by Lagranges mean value theorem. As \m{h\tendsto 0} we have \m{\xi_h \tendsto 0}, and so
104
105 \startformula
106 \lim_{h\tendsto 0}\frac{\phi(0h)\phi(0)}{h}=\lim_{h\tendsto 0}\phi(\xi_h)=A.
107 \stopformula
108\stopproof
109
110\startproof
111 [title={of \in{Theorem}[thm:lHospital]}]
112 Since \m{g} is a Darboux function it will not change sign in \m{\openinterval{a,b}}, and for simplicity we assume that \m{g > 0} in this interval. Lagranges mean value theorem assures that \m{g} is strictly monotone in the interval \m{\rightopeninterval{a,b}} and thus that it has an inverse \m{g{1}\maps \rightopeninterval{0,g(b)} \to \rightopeninterval{a,b}}.
113
114 The composite function \m{\phi \mapsas t\mapsto f(g{1}(t))}, \m{t \in \rightopeninterval{0,g(b)}} is continuous at \m{t = 0} and differentiable for \m{t \in \openinterval{0, g(b)}}. By the substitution \m{t = g(x)} in the given limit, together with the chain rule and the rule of derivatives of inverse functions, we get
115
116 \startformula
117 A = \lim_{x\tendsto a} \frac{f(x)}{g(x)}
118 = \lim_{t\tendsto 0} \frac{f(g{1}(t))}{g(g{1}(t))}
119 = \lim_{t\tendsto 0} \frac{\dd}{\dd t}f(g{1}(t))
120 = \lim_{t\tendsto 0} \phi(t).
121 \stopformula
122
123 By \in{Lemma}[lemma:rightderivative], and by substitution \m{t = g(x)} again, we conclude that
124
125 \startformula
126 A = \lim_{t\tendsto 0} \frac{\phi(0t)\phi(0)}{t}
127 = \lim_{t\tendsto 0} \frac{f(g{1}(t))}{t}
128 = \lim_{x\tendsto a} \frac{f(x)}{g(x)}.
129 \stopformula
130
131 This completes the proof.
132\stopproof
133
134\stoptext
135 |