
metafun xl
Hans Hagen

uncorrected draft 1

Contents

Introduction 2
1 Technology 4
2 Text 6
3 Axis 10
4 Outline 12
5 Followtext 15
6 Placeholder 18
7 Arrow 20
8 Shade 23
9 Contour 29
10 Surface 40
11 Mesh 43
12 Function 47
13 Chart 53
14 SVG 62
15 Poisson 64
16 Fonts 68
17 Color 75
18 Lines 80
19 Paths 81
20 Envelopes 100
21 Groups 112
22 Potrace 113
23 Extensions 118
24 Interface 135

Introduction uncorrected draft 2

Introduction

For quite a while, around since 1996, the integration of MetaPost into ConTEXt became sort of mature but,
it took decades of stepwise refinement to reach the state that we're in now. In this manual I will discuss
some of the features that became possible by combining Lua and MetaPost. We already had quite a bit of
that for a decade but in 2018, when LuaMetaTEX showed up a next stage was started.

Before we go into details it is good to summarize the steps that were involved in integrating MetaPost and
TEX in ConTEXt. It indicates a bit what we had and have to deal with which in turn lead to the interfaces
we now have.

Originally, TEX had no graphic capabilities: it just needed to know dimensions of the graphics and pass
some basic information about what to include to the dvi post processor. So, a MetaPost graphic was nor
mally processed outside the current run, resulting in PostScript graphic, that then had to be included.
In pdfTEX there were some more built in options, and therefore the MetaPost code could be processed
runtime using some (generic) TEX macros that I wrote. However, that engine still had to launch MetaPost
for each graphic, although we could accumulate them and do that between runs. Immediate process
ing means that we immediately know the dimensions, while a collective run is faster. In LuaTEX this
all changed to very fast runtime processing, made possible because the MetaPost library is embedded in
the engine, a decision that we made early in the project and never regret.

With pdfTEX the process was managed by the texexec ConTEXt runner but with LuaTEX it stayed under
the control of the current run. In the case of pdfTEX the actual embedding was done by TEX macros that
interpreted the (relatively simple) PostScript code and turned it into pdf literals. In LuaTEX that job was
delegated to Lua.

When using pdfTEX with independent MetaPost runs support for special color spaces, transparency,
embedded graphics, outline text, shading and more was implemented using specials and special colors
where the color served as reference to some special extension. This works quite well. In LuaTEX the pre-
and postscript features, which are properties of picture objects, are used.

In all cases, some information about the current run, for instance layout related information, or color
information, has to be passed to the rather isolated MetaPost run. In the case if LuaTEX (and MkIV) the
advantage is that processing optional text happens in the same process so there we don't need to pass
information about for instance the current font setup.

In LuaTEX the MetaPost library has a runscript feature, which will call Lua with the given code. This
permitted a better integration: we could now ask for specific information (to the TEX end) instead of
passing it from the TEX end with each run. In LuaMetaTEX another feature was added: access to the
scanners from the Lua end. Although we could already fetch some variables when in Lua this made it
possible to extend the MetaPost language in ways not possible before.

Already for a while Alan Braslau and I were working on some new MetaFun code that exploits all these new
features. When the scanners came available I sat down and started working on new interfaces and in this
manual I will discuss some of these. Some of them are illustrative, others are probably rather useful. The
core of what we could call LuaMetaFun (or MetaFun XL when we use the file extension as indicator) is a
key-value interface as we have at the TEX end. This interface relates to ConTEXt LMTX development and
therefore related files have a different suffix: mpxl. However, keep in mind that some are just wrappers
around regular MetaPost code so you have the full power of traditional MetaPost at hand.

Introduction uncorrected draft 3

We can never satisfy all needs, so to some extent this manual also demonstrates how to roll out your own
code, but for that you also need to peek into the MetaFun source code too. It will take a while for this
manual to complete. I also expect other users to come up with solutions, so maybe in the end we will
have a collection of modules for specific tasks.

There is some duplication between this manual and the MetaFun manual which is mostly a side effect
of some functionality not being present in MkIV and discussing it in the LuaMetaFun manual would be
confusing. Also, from an educational point of view it doesn't hurt to read about it twice.

Because Mikael Sundqvist and I both like MetaPost and we work together on improving existing and ex
ploring new features in the engine as well as MetaFun. Some of the examples in this manual result from
that. We have a lot of fun working on this and a side effect this manual benefits a lot from our collabora
tion.

Hans Hagen
Hasselt NL
August 2021 (and beyond)

Technology uncorrected draft 4

1 Technology

The MetaPost library that we use in LuaMetaTEX is a follow up on the library used in LuaTEX which itself
is a follow up on the original MetaPost program that again was a follow up on Don Knuths MetaFont, the
natural companion to TEX.

When we start with John Hobbies MetaPost we see a graphical engine that provides a simple but powerful
programming language meant for making graphics, not the freehand kind, but the more systematic ones.
The output is PostScript but a simple kind that can easily be converted to pdf.1 It's output is very accurate
and performance is great.

As part of the LuaTEX development project Taco Hoekwater turned MetaPost into mplib, a downward
compatible library where MetaPost became a small program using that library. But there is more: there
are (when enabled) backends that produce png or svg, but when used these also add dependencies on
moving targets. The library by default uses the so called scaled numbers: floats that internally are long
integers. But it can also work in doubles, decimal and binary and especially the last two create a depen
dency on libraries. It is good to notice that as in the original MetaPost the PostScript output handling is
visible all over the source. Also, the way Type1 fonts are handled has been extended, for instance by pro
viding access to shapes.

At some point a Lua interface got added that made it possible to call out to the Lua instance used in Lua
TEX, so the three concepts: TEX, MetaPost and Lua can combine forces. A snippet of code can be run, and
a result can be piped back. Although there is some limited access to MetaPost internals, the normal way
to go is by serializing MetaPost data to the Lua end and let MetaPost scan the result using scantokens.

The library in LuaMetaTEX is a bit different. Of course it has the same core graphic engine, but there
is no longer a backend. In ConTEXt MkIV the PostScript (and other) backends were not used anyway
because it operates on the exported Lua representation of the result. Combined with the prescript and
postscript features introduced in the library that provides all we need to make interesting extensions
to the graphical engine (color, shading, image inclusion, text, etc). The MetaPost font support features
are also not used because we need support for OpenType and even in MkII (for pdfTEX and X ETEX) we
used a different approach to fonts.

It is for that reason that the library we use in LuaMetaTEX is a leaner version of its ancestor. As mentioned,
there is no backend code, only the Lua export, which saves a lot, and there are no traces of font support
left, which also drops many lines of code. We forget about the binary number model because it needs a
large library that also occasionally changes, but one can add it if needed. This means that there are no
dependencies except for decimal but that library is relatively small and doesn't change at all. It also
means that the resulting mplib library is much smaller, but it's still a substantial component in Lua
MetaTEX. Internally I use the future version number 3. The original MetaPost program is version 1, so
the library got version 2, and that one basically being frozen (it's in bug-fix mode) means that it will stick
to that.

Another difference is that from the Lua end one has access to several scanners and also has possibilities
to efficiently push back results to the engine. Running scripts can also be done more efficient. This
permits a rather efficient (in terms of performance and memory usage) way to extend the language and

1 For that purpose I wrote a converter in the TEX language for pdfTEX, and even within the limitations of TEX at that time (fonts,
number of registers, memory) it worked out quite well.

Technology uncorrected draft 5

add for instance key/value based interfaces. There are some more additions, like for instance pre- and
postscripts to clip, boundary and group objects. Internals can be numeric, string and boolean. One can
use utf input although that has also be added to the ancestor. Some redundant internal input/output
remapping has been removed and we are more tolerant to newlines in return values from Lua. Error
messages have been normalized, internal documentation cleaned up a bit. A few anomalies have been
fixed too. All in- and output is now under Lua control. Etcetera. The (now very few) source files are still
cweb files but the conversion to C is done with a Lua script that uses (surprise) the LuaMetaTEX engine
as Lua processor. This give a bit nicer C output for when we view it in e.g. Visual Studio too (normally the
cweb output is not meant to be seen by humans).

Keep in mind that it's still MetaPost with all it provided, but some has to be implemented in macros or in
Lua via callbacks. The simple fact that the original library is the standard and is also the core of MetaPost
most of these changes and additions cannot be backported to the original, but that is no big deal. The
advantage is that we can experiment with new features without endangering users outside the ConTEXt
bubble. The same is true for the Lua interface, which already is upgraded in many aspects.

Text uncorrected draft 6

2 Text

2.1 Typesetting text
The MetaFun textext command normally can do the job of typesetting a text snippet quite well.

\startMPcode
fill fullcircle xyscaled (8cm,1cm) withcolor "darkred" ;
draw textext("\bf This is text A") withcolor "white" ;

\stopMPcode

We get:

This is text A

You can use regular ConTEXt commands, so this is valid:

\startMPcode
fill fullcircle xyscaled (8cm,1cm) withcolor "darkred" ;
draw textext("\framed{\bf This is text A}") withcolor "white" ;

\stopMPcode

Of course you can as well draw a frame in MetaPost but the \framed command has more options, like
alignments.

This is text A

Here is a variant using the MetaFun interface:

\startMPcode
fill fullcircle xyscaled (8cm,1cm) withcolor "darkred" ;
draw lmt_text [

text = "This is text A",
color = "white",
style = "bold"

] ;
\stopMPcode

The outcome is more or less the same:

This is text A

Here is another example. The format option is actually why this command is provided.

\startMPcode
fill fullcircle xyscaled (8cm,1cm) withcolor "darkred" ;
draw lmt_text [

Text uncorrected draft 7

text = decimal 123.45678,
color = "white",
style = "bold",
format = "@0.3F",

] ;
\stopMPcode

123.457

The following parameters can be set:

name type default comment

offset numeric 0
strut string auto adapts the dimensions to the font (yes uses the the default strut)
style string
color string
text string
anchor string one of these lft, urt like anchors
format string a format specifier using @ instead of a percent sign
position pair origin
trace boolean false

The next example demonstrates the positioning options:

\startMPcode
fill fullcircle xyscaled (8cm,1cm) withcolor "darkblue" ;
fill fullcircle scaled .5mm withcolor "white" ;
draw lmt_text [

text = "left",
color = "white",
style = "bold",
anchor = "lft",
position = (-1mm,2mm),

] ;
draw lmt_text [

text = "right",
color = "white",
style = "bold",
anchor = "rt",
offset = 3mm,

] ;
\stopMPcode

left right

Text uncorrected draft 8

2.2 Strings
Those familiar with TEX probably know that there's something called catcodes. These are properties that
you assign to characters and that gives them some meaning, like regular letters, other characters, spaces,
but also escape character (the backslash) or math shift (the dollar). Control over catcodes is what makes
for instance verbatim possible.

We show a few possibilities and start by defining a macro:

\def\foo{x}

\framed\bgroup
\startMPcode

interim catcoderegime := vrbcatcoderegime ;
draw textext("stream $\string\foo$") withcolor "darkred" ;

\stopMPcode
\egroup

stream \foo

\framed\bgroup
\startMPcode

draw textext("stream \foo") withcolor "darkblue" ;
\stopMPcode

\egroup

stream 𝑥

\framed\bgroup
\startMPcode

interim catcoderegime := vrbcatcoderegime ;
draw textext(stream "!" $\string\foo$) withcolor "darkgreen" ;

\stopMPcode
\egroup

stream "!" \foo

\framed\bgroup
\startMPcode

draw textext(stream "!" \foo) withcolor "darkyellow" ;
\stopMPcode

\egroup

stream "!" 𝑥

\framed\bgroup
\startMPcode

draw textext(\btx stream "!" $\string\foo$\etx) withcolor "darkgreen" ;
\stopMPcode

Text uncorrected draft 9

\egroup

stream "!" 𝑥

The vrbcatcodesregime switches to a verbatim catcode regime so the dollars remain dollars. But be
cause we do expand control sequences we have to put \string in front.

The (expandable) \btx and \etx commands are aliases for the control characters 0x02 and 0x03. These
are valid string fences in LuaMetaTEX's MetaPost and thereby permit embedding of the double quotes.

Axis uncorrected draft 10

3 Axis

The axis macro is the result of one of the first experiments with the key/value interface in MetaFun. Let's
show a lot in one example:

\startMPcode
draw lmt_axis [

sx = 5mm, sy = 5mm,
nx = 20, ny = 10,
dx = 5, dy = 2,
tx = 10, ty = 10,

list = {
[

connect = true,
color = "darkred",
close = true,
points = { (1, 1), (15, 8), (2, 10) },
texts = { "segment 1", "segment 2", "segment 3" }

],
[

connect = true,
color = "darkgreen",
points = { (2, 2), (4, 1), (10, 3), (16, 8), (19, 2) },
labels = { "a", "b", "c", "d", "e" }

],
[

connect = true,
color = "darkblue",
close = true,
points = { (5, 3), (8, 8), (16, 1) },
labels = { "1", "2", "3" }

]
},

] withpen pencircle scaled 1mm ;
\stopMPcode

This macro will probably be extended at some point.

name type default comment

nx numeric 1
dx numeric 1
tx numeric 0
sx numeric 1
startx numeric 0
ny numeric 1
dy numeric 1

Axis uncorrected draft 11

0 10 20

0

10 segment 1

segm
ent 2

segment 3

a

b

c

d

e

1

2

3

Figure 3.1

ty numeric 0
sy numeric 1
starty numeric 0

samples list
list list
connect boolean false
list list
close boolean false
samplecolors list
axiscolor string
textcolor string

Outline uncorrected draft 12

4 Outline
In a regular text you can have outline characters by setting a (pseudo) font feature but sometimes you
want to play a bit more with this. In MetaFun we always had that option. In MkII we call pstoedit to
turn text into outlines, in MkIV we do that by manipulating the shapes directly. And, as with some other
extensions, in LMTX a new interface has been added, but the underlying code is the same as in MkIV.

In figure 4.1 we see two examples:

\startMPcode{doublefun}
draw lmt_outline [

text = "hello"
kind = "draw",
drawcolor = "darkblue",

] xsized .45TextWidth ;
\stopMPcode

and

\startMPcode{doublefun}
draw lmt_outline [

text = "hello",
kind = "both",
fillcolor = "middlegray",
drawcolor = "darkgreen",
rulethickness = 1/5,

] xsized .45TextWidth ;
\stopMPcode

kind=draw kind=both

Figure 4.1 Drawing and/or filling an outline.

Normally the fill ends up below the draw but we can reverse the order, as in figure 4.2, where we coded
the leftmost example as:

\startMPcode{doublefun}
draw lmt_outline [

text = "hello",
kind = "reverse",
fillcolor = "darkred",
drawcolor = "darkblue",
rulethickness = 1/2,

] xsized .45TextWidth ;
\stopMPcode

Outline uncorrected draft 13

kind=reverse kind=both

Figure 4.2 Reversing the order of drawing and filling.

It is possible to fill and draw in one operation, in which case the same color is used for both, see figure 4.3
for an example fo this. This is a low level optimization where the shape is only output once.

kind=fillup kind=fill

Figure 4.3 Combining a fill with a draw in the same color.

This interface is much nicer than the one where each variant (the parameter kind above) had its own
macro due to the need to group properties of the outline and fill. Let's show some more:

\startMPcode{doublefun}
draw lmt_outline [

text = "\obeydiscretionaries\samplefile{tufte}",
align = "normal",
kind = "draw",
drawcolor = "darkblue",

] xsized TextWidth ;
\stopMPcode

In this case we feed the text into the \framedmacro so that we get a properly aligned paragraph of text, as
demonstrated in figure 4.4 and ??. If you want more trickery you can of course use any ConTEXt command
(including \framed with all kind of options) in the text.

Figure 4.4 Outlining a paragraph of text.

\startMPcode{doublefun}
draw lmt_outline [

text = "\obeydiscretionaries\samplefile{ward}",
align = "normal,tolerant",

Outline uncorrected draft 14

style = "bold",
width = 10cm,
kind = "draw",
drawcolor = "darkblue",

] xsized TextWidth ;
\stopMPcode

Figure 4.5 Outlining a paragraph of text with a specific width.

We summarize the parameters:

name type default comment

text string
kind string draw One of draw, fill, both, reverse and fillup.
fillcolor string
drawcolor string
rulethickness numeric 1/10
align string
style string
width numeric

Followtext uncorrected draft 15

5 Followtext

Typesetting text along a path started as a demo if communication between TEX and MetaPost in the early
days of MetaFun. In the meantime the implementation has been modernized a few times and the current
implementation feels okay, especially now that we have a better user interface. Here is an example:

\startMPcode{doublefun}
draw lmt_followtext [

text = "How well does it work {\bf 1}! ",
path = fullcircle scaled 4cm,
trace = true,
spread = true,

] ysized 5cm ;
\stopMPcode

Here is the same example but with the text in the reverse order. The results of both examples are shown
in figure 5.1.

\startMPcode{doublefun}
draw lmt_followtext [

text = "How well does it work {\bf 2}! ",
path = fullcircle scaled 4cm,
trace = true,
spread = false,
reverse = true,

] ysized 5cm ;
\stopMPcode

H
o

w

well

d
o

e
s

i

t
w o r k

1
!

How
wel

ld
oe

s
it

w
or

k 2!

Figure 5.1

There are not that many options. One is autoscale which makes the shape and text match. Figure 5.2
shows what happens.

\startMPcode{doublefun}
draw lmt_followtext [

text = "How well does it work {\bf 3}! ",
trace = true,
autoscaleup = "yes"

Followtext uncorrected draft 16

] ysized 5cm ;
\stopMPcode

\startMPcode{doublefun}
draw lmt_followtext [

text = "How well does it work {\bf 4}! ",
path = fullcircle scaled 2cm,
trace = true,
autoscaleup = "max"

] ysized 5cm ;
\stopMPcode

H
ow

welldoes it work 3!

H
o

w
welld

o
e

s
i t w o r k

4
!

Figure 5.2

You can use quite strange paths, like the one show in figure 5.3. Watch the parenthesis around the path.
this is really needed in order for the scanner to pick up the path (otherwise it sees a pair).

\startMPcode{doublefun}
draw lmt_followtext [

text = "\samplefile {zapf}",
path = ((3,0) .. (1,0) .. (5,0) .. (2,0) .. (4,0) .. (3,0)),
autoscaleup = "max"

] xsized TextWidth ;
\stopMPcode

The small set of options is:

name type default comment

text string
spread string true
trace numeric false
reverse numeric false
autoscaleup numeric no
autoscaledown string no
path string (fullcircle)

Followtext uncorrected draft 17

Co
m

in
gbackto

theuseoftypefacesinelectronicpublishing:manyofthenew
typographers

receive
their know

ledge
and

inform
ation

about the rules of typography from books, from computer magazines or the instruction manuals which they get with
th

e purc
ha

se
of

a
PC

or
so

ftw
ar

e.
Th

er
e

is
no

ts
o

m
uc

h
ba

si
c

in
st

ru
ct

io
n,

as
of

no
w,

as
th

er
ewasin

theolddays,showingthedifferencesbetweengoodandbadtypographicdesign.M
any

people
are

just fascinated
by

their PC's tricks, and think that a widely||praised program, calle

d up
on

th
e

sc
re

en
,w

ill
m

ak
e

ev
er

ythingautomaticfromnow
on.

Figure 5.3

Placeholder uncorrected draft 18

6 Placeholder

Placeholders are an old ConTEXt features and have been around since we started using MetaPost. They
are used as dummy figure, just in case one is not (yet) present. They are normally activated by loading a
MetaFun library:

\useMPLibrary[dum]

Just because it could be done conveniently, placeholders are now defined at the MetaPost end instead of
as useable MetaPost graphic at the TEX end. The variants and options are demonstrated using side floats.

Figure 6.1

\startMPcode
lmt_placeholder [

width = 4cm,
height = 3cm,
color = "red",
alternative = "circle".

] ;
\stopMPcode

In addition to the traditional random circle we now also provide rectangles and triangles. Maybe some
day more variants will show up.

Figure 6.2

\startMPcode
lmt_placeholder [

width = 4cm,
height = 3cm,
color = "green",
alternative = "square".

] ;
\stopMPcode

Here we set the colors but in the image placeholder mechanism we cycle through colors automatically.
Here we use primary, rather dark, colors.

Figure 6.3

\startMPcode
lmt_placeholder [

width = 4cm,
height = 3cm,
color = "blue",
alternative = "triangle".

] ;
\stopMPcode

If you want less dark colors, the reduction parameter can be used to interpolate between the given
color and white; its value is therefore a value between zero (default) and 1 (rather pointless as it produces
white).

Placeholder uncorrected draft 19

0 0.25

0.50 0.75

Figure 6.4

We demonstrate this with four variants, all circles.
Of course you can also use lighter colors, but this
option was needed for the image placeholders any
way.

\startMPcode
lmt_placeholder [

width = 4cm,
height = 3cm,
color = "yellow",
alternative = "circle".
reduction = 0.25,

] ;
\stopMPcode

There are only a few possible parameters. As you can see, proper dimensions need to be given because
the defaults are pretty small.

name type default comment

color string red
width numeric 1
height numeric 1
reduction numeric 0
alternative string circle

Arrow uncorrected draft 20

7 Arrow

Arrows are somewhat complicated because they follow the path, are constructed using a pen, have a fill
and draw, and need to scale. One problem is that the size depends on the pen but the pen normally is
only known afterwards.

To some extent MetaFun can help you with this issue. In figure 7.1 we see some variants. The definitions
are given below:

\startMPcode
draw lmt_arrow [

path = (fullcircle scaled 3cm),
]

withpen pencircle scaled 2mm
withcolor "darkred" ;

\stopMPcode

\startMPcode
draw lmt_arrow [

path = (fullcircle scaled 3cm),
length = 8,

]
withpen pencircle scaled 2mm
withcolor "darkgreen" ;

\stopMPcode

\startMPcode
draw lmt_arrow [

path = (fullcircle scaled 3cm rotated 145),
pen = (pencircle xscaled 4mm yscaled 2mm rotated 45),

]
withpen pencircle xscaled 1mm yscaled .5mm rotated 45
withcolor "darkblue" ;

\stopMPcode

\startMPcode
pickup pencircle xscaled 2mm yscaled 1mm rotated 45 ;
draw lmt_arrow [

path = (fullcircle scaled 3cm rotated 45),
pen = "auto",

]
withcolor "darkyellow" ;

\stopMPcode

There are some options that influence the shape of the arrowhead and its location on the path. You can
for instance ask for two arrowheads:

\startMPcode
pickup pencircle scaled 1mm ;

Arrow uncorrected draft 21

default length pen auto

Figure 7.1

draw lmt_arrow [
pen = "auto",
location = "both"
path = fullcircle scaled 3cm rotated 90,

] withcolor "darkgreen" ;
\stopMPcode

The shape can also be influenced although often this is not that visible:

\startMPcode
pickup pencircle scaled 1mm ;
draw lmt_arrow [

kind = "draw",
pen = "auto",
penscale = 4,
location = "middle",
alternative = "curved",
path = fullcircle scaled 3cm,

] withcolor "darkblue" ;
\stopMPcode

The location can also be given as percentage, as this example demonstrates. Watch how we draw only
arrow heads:

\startMPcode

Arrow uncorrected draft 22

pickup pencircle scaled 1mm ;
for i = 0 step 5 until 100 :

draw lmt_arrow [
alternative = "dimpled",
pen = "auto",
location = "percentage",
percentage = i,
dimple = (1/5 + i/200),
headonly = (i = 0),
path = fullcircle scaled 3cm,

] withcolor "darkyellow" ;
endfor ;

\stopMPcode

The supported parameters are:

name type default comment

path path
pen path

string auto
kind string fill fill or draw
dimple numeric 1/5
scale numeric 3/4
penscale numeric 3
length numeric 4
angle numeric 45
location string end end, middle or both
alternative string normal normal, dimpled or curved
percentage numeric 50
headonly boolean false

Shade uncorrected draft 23

8 Shade

8.1 Shading operators
see MetaFun manual.

8.2 Shading interface.
This interface is still experimental!

Shading is complex. We go from one color to another on a continuum either linear or circular. We have to
make sure that we cover the whole shape and that means that we have to guess a little, although one can
influence this with parameters. It can involve a bit of trial and error, which is more complex that using a
graphical user interface but this is the price we pay. It goes like this:

\startMPcode
definecolor [name = "MyColor3", r = 0.22, g = 0.44, b = 0.66] ;
definecolor [name = "MyColor4", r = 0.66, g = 0.44, b = 0.22] ;

draw lmt_shade [
path = fullcircle scaled 4cm,
direction = "right",
domain = { 0, 2 },
colors = { "MyColor3", "MyColor4" },

] ;

draw lmt_shade [
path = fullcircle scaled 3cm,
direction = "left",
domain = { 0, 2 },
colors = { "MyColor3", "MyColor4" },

] shifted (45mm,0) ;

draw lmt_shade [
path = fullcircle scaled 5cm,
direction = "up",
domain = { 0, 2 },
colors = { "MyColor3", "MyColor4" },

] shifted (95mm,0) ;

draw lmt_shade [
path = fullcircle scaled 1cm,
direction = "down",
domain = { 0, 2 },
colors = { "MyColor3", "MyColor4" },

] shifted (135mm,0) ;
\stopMPcode

Normally this is good enough as demonstrated in figure 8.1 because we use shades as backgrounds. In
the case of a circular shade we need to tweak the domain because guessing doesn't work well.

Shade uncorrected draft 24

Figure 8.1 Simple circular shades.

\startMPcode
draw lmt_shade [

path = fullsquare scaled 4cm,
alternative = "linear",
direction = "right",
colors = { "MyColor3", "MyColor4" },

] ;

draw lmt_shade [
path = fullsquare scaled 3cm,
direction = "left",
alternative = "linear",
colors = { "MyColor3", "MyColor4" },

] shifted (45mm,0) ;

draw lmt_shade [
path = fullsquare scaled 5cm,
direction = "up",
alternative = "linear",
colors = { "MyColor3", "MyColor4" },

] shifted (95mm,0) ;

draw lmt_shade [
path = fullsquare scaled 1cm,
direction = "down",
alternative = "linear",
colors = { "MyColor3", "MyColor4" },

] shifted (135mm,0) ;
\stopMPcode

The direction relates to the boundingbox. Instead of a keyword you can also give two values, indicating
points on the boundingbox. Because a boundingbox has four points, the up direction is equivalent to
{0.5,2.5}.

The parameters center, factor, vector and domain are a bit confusing but at some point the way they
were implemented made sense, so we keep them as they are. The center moves the center of the path
that is used as anchor for one color proportionally to the bounding box: the given factor is multiplied by
half the width and height.

Shade uncorrected draft 25

Figure 8.2 Simple rectangular shades.

\startMPcode
draw lmt_shade [

path = fullcircle scaled 5cm,
domain = { .2, 1.6 },
center = { 1/10, 1/10 },
direction = "right",
colors = { "MyColor3", "MyColor4" },
trace = true,

] ;
\stopMPcode

center a

center b

Figure 8.3 Moving the centers.

A vector takes the given points on the path as centers for the colors, see figure 8.4.

\startMPcode
draw lmt_shade [

path = fullcircle scaled 5cm,
domain = { .2, 1.6 },
vector = { 2, 4 },
direction = "right",
colors = { "MyColor3", "MyColor4" },
trace = true,

] ;
\stopMPcode

Shade uncorrected draft 26

center a

center b

Figure 8.4 Using a vector (points).

Messing with the radius in combination with the previously mentioned domain is really trial and error,
as seen in figure 8.5.

\startMPcode
draw lmt_shade [

path = fullcircle scaled 5cm,
domain = { 0.5, 2.5 },
radius = { 2cm, 6cm },
direction = "right",
colors = { "MyColor3", "MyColor4" },
trace = true,

] ;
\stopMPcode

center a

center b

Figure 8.5 Tweaking the radius.

But actually the radius used alone works quite well as shown in figure 8.6.

\startMPcode
draw lmt_shade [

path = fullcircle scaled 5cm,
colors = { "red", "green" },
trace = true,

] ;

Shade uncorrected draft 27

draw lmt_shade [
path = fullcircle scaled 5cm,
colors = { "red", "green" },
radius = 2.5cm,
trace = true,

] shifted (6cm,0) ;

draw lmt_shade [
path = fullcircle scaled 5cm,
colors = { "red", "green" },
radius = 2.0cm,
trace = true,

] shifted (12cm,0) ;
\stopMPcode

center a

center b

center a

center b

center a

center b

Figure 8.6 Just using the radius.

name type default comment

alternative string circular or linear
path path
trace boolean false
domain set of numerics
radius numeric

set of numerics
factor numeric
origin pair

set of pairs
vector set of numerics
colors set of strings
center numeric

set of numerics
direction string up, down, left, right

set of numerics two points on the boundingbox

8.3 Patterns
Instead using a shade one can use a pattern which is basically a fill with a repeated image. Here are some
examples:

Shade uncorrected draft 28

\startMPcode
draw

(
(fulldiamond xscaled 8cm yscaled 5cm randomizedcontrols 10mm) && reverse
(fulldiamond xscaled 6cm yscaled 3cm randomizedcontrols 10mm) && cycle

)
withpattern image (fill fullcircle scaled 2mm withcolor "darkyellow" ;)

;
\stopMPcode

The image macro produces a picture that is then used for the filling:

That image can also be an (external) figure:

Of course one needs to find a suitable image for this, but here we just use one of the test figures:

\startMPcode
draw

(
(fullcircle xscaled 8cm yscaled 4cm randomizedcontrols 5mm) && reverse
(fullcircle xscaled 6cm yscaled 2cm randomizedcontrols 5mm) && cycle

)
withpattern image (draw figure "hacker.jpg" ;)
withpatternscale (1/10,1/20)

;
\stopMPcode

8.4 Luminance
Todo: groups and such.

Contour uncorrected draft 29

9 Contour

This feature started out as experiment triggered by a request on the mailing list. In the end it was a nice
exploration of what is possible with a bit of Lua. In a sense it is more subsystem than a simple MetaPost
macro because quite some Lua code is involved and more might be used in the future. It's part of the fun.

A contour is a line through equivalent values 𝑧 that result from applying a function to two variables 𝑥
and 𝑦. There is quite a bit of analysis needed to get these lines. In MetaFun we currently support three
methods for generating a colorful background and three for putting lines on top:

One solution is to use the the isolines and isobands methods are described on the marching squares page
of wikipedia:

https://en.wikipedia.org/wiki/Marching_squares

This method is relative efficient as we don't do much optimization, simply because it takes time and the
gain is not that much relevant. Because we support filling of multiple curves in one go, we get efficient
paths anyway without side effects that normally can occur from many small paths alongside. In these
days of multi megabyte movies and sound clips a request of making a pdf file small is kind of strange
anyway. In practice the penalty is not that large.

As background we can use a bitmap. This method is also quite efficient because we use indexed colors
which results in a very good compression. We use a simple mapping on a range of values.

A third method is derived from the one that is distributed as C source file at:

https://physiology.arizona.edu/people/secomb/contours
https://github.com/secomb/GreensV4

We can create a background image, which uses a sequence of closed curves2. It can also provide two
variants of lines around the contours (we tag them shape and shade). It's all a matter of taste. In the
meantime I managed to optimize the code a bit and I suppose that when I buy a new computer (the code
was developed on an 8 year old machine) performance is probably acceptable.

In order of useability you can think of isoband (band) with isolines (cell), bitmap (bitmap) with isolines
(cell) and finally shapes (shape) with edges (edge). But let's start with a couple of examples.

\startMPcode{doublefun}
draw lmt_contour [

xmin = 0, xmax = 4*pi, xstep = .05,
ymin = -6, ymax = 6, ystep = .05,

levels = 7,
height = 5cm,
preamble = "local sin, cos = math.sin, math.cos",
function = "cos(x) + sin(y)",
background = "bitmap",
foreground = "edge",

2 I have to figure out how to improve it a bit so that multiple path don't get connected.

Contour uncorrected draft 30

-1.82
-1.28
-0.54
0.11
0.84
1.56
1.96

0 2.51 5.03 7.54 10.05 12.57
-6

-3.6

-1.2

1.2

3.6

6

x = [0,12.566] ; y = [-6,6] ;

cos(x) + sin(y)

Figure 9.1

linewidth = 1/2,
cache = true,

] ;
\stopMPcode

In figure 9.1 we see the result. There is a in this case black and white image generated and on top of that
we see lines. The step determines the resolution of the image. In practice using a bitmap is quite okay and
also rather efficient: we use an indexed colorspace and, as already was mentioned, because the number
of colors is limited such an image compresses well. A different rendering is seen in figure 9.2 where we
use the shape method for the background. That method creates outlines but is much slower, and when
you use a high resolution (small step) it can take quite a while to identify the shapes. This is why we set
the cache flag.

\startMPcode{doublefun}
draw lmt_contour [

xmin = 0, xmax = 4*pi, xstep = .10,
ymin = -6, ymax = 6, ystep = .10,

levels = 7,
preamble = "local sin, cos = math.sin, math.cos",
function = "cos(x) - sin(y)",
background = "shape",
foreground = "shape",
linewidth = 1/2,
cache = true,

] ;
\stopMPcode

We mentioned colorspace but haven't seen any color yet, so let's set some in figure 9.3. Two variants are
shown: a background shape with foreground shape and a background bitmap with a foreground edge.
The bitmap renders quite fast, definitely when we compare with the shape, while the quality is as good
at this size.

Contour uncorrected draft 31

-1.82

-1.28

-0.54

0.11

0.84

1.56

1.97

0 2.51 5.03 7.54 10.05 12.57

-6

-3.6

-1.2

1.2

3.6

6

x = [0,12.566] ; y = [-6,6] ;

cos(x) - sin(y)

Figure 9.2

\startMPcode{doublefun}
draw lmt_contour [

xmin = -10, xmax = 10, xstep = .1,
ymin = -10, ymax = 10, ystep = .1,

levels = 10,
height = 7cm,
color = "shade({1/2,1/2,0},{0,0,1/2})",
function = "x^2 + y^2",
background = "shape",
foreground = "shape",
linewidth = 1/2,
cache = true,

] xsized .45TextWidth ;
\stopMPcode

5.01
20.05
40.17
60.32
80.41
99.65

119.78
139.86
159.64
179.07
194.73

-10 -6 -2 2 6 10
-10

-6

-2

2

6

10

x = [-10,10] ; y = [-10,10] ;

x^2 + y^2

5.01
20.05
40.17
60.32
80.41
99.65

119.78
139.86
159.64
179.07
194.73

-10 -6 -2 2 6 10
-10

-6

-2

2

6

10

x = [-10,10] ; y = [-10,10] ;

x^2 + y^2

shape bitmap

Figure 9.3

We use the doublefun instance because we need to be sure that we don't run into issues with scaled
numbers, the default model in MetaPost. The function that gets passed is not using MetaPost but Lua, so
basically you can do very complex things. Here we directly pass code, but you can for instance also do
this:

Contour uncorrected draft 32

\startluacode
function document.MyContourA(x,y)

return x^2 + y^2
end

\stopluacode

and then function = "document.MyContourA(x,y)". As long as the function returns a valid num
ber we're okay. When you pass code directly you can use the preamble key to set local shortcuts. In the
previous examples we took sin and cos from the math library but you can also roll out your own func
tions and/or use the more elaborate xmath library. The color parameter is also a function, one that re
turns one or three arguments. In the next example we use lin to calculate a fraction of the current level
and total number of levels.

\startMPcode{doublefun}
draw lmt_contour [

xmin = -3, xmax = 3, xstep = .01,
ymin = -1, ymax = 1, ystep = .01,

levels = 10,
default = .5,
height = 5cm,
function = "x^2 + y^2 + x + y/2",
color = "lin(l), 0, 1/2",
background = "bitmap"
foreground = "none",
cache = true,

] xsized TextWidth ;
\stopMPcode

0.05
1.1

2.61
4.11
5.56
7.04
8.57

10.05
11.48
12.66

-3 -1.8 -0.6 0.6 1.8 3
-1

-0.6

-0.2

0.2

0.6

1

x = [-3,3] ; y = [-1,1] ;

x^2 + y^2 + x + y/2

Figure 9.4

Instead of a bitmap we can use an isoband, which boils down to a set of tiny shapes that make up a bigger
one. This is shown in figure 9.5.

\startMPcode{doublefun}
draw lmt_contour [

Contour uncorrected draft 33

xmin = -3, xmax = 3, xstep = .01,
ymin = -1, ymax = 1, ystep = .01,

levels = 10,
default = .5,
height = 5cm,
function = "x^2 + y^2 + x + y/2",
color = "lin(l), 1/2, 0",
background = "band",
foreground = "none",
cache = true,

] xsized TextWidth ;
\stopMPcode

0.05
1.1

2.61
4.11
5.56
7.04
8.57

10.05
11.48
12.66

-3 -1.8 -0.6 0.6 1.8 3
-1

-0.6

-0.2

0.2

0.6

1

x = [-3,3] ; y = [-1,1] ;

x^2 + y^2 + x + y/2

Figure 9.5

You can draw several functions and see where they overlap:

\startMPcode{doublefun}
draw lmt_contour [

xmin = -pi, xmax = 4*pi, xstep = .1,
ymin = -3, ymax = 3, ystep = .1,

range = { -.1, .1 },
preamble = "local sin, cos = math.sin, math.cos",
functions = {

"sin(x) + sin(y)", "sin(x) + cos(y)",
"cos(x) + sin(y)", "cos(x) + cos(y)"

},
background = "bitmap",
linecolor = "black",
linewidth = 1/10,
color = "shade({1,1,0},{0,0,1})"
cache = true,

] xsized TextWidth ;
\stopMPcode

Contour uncorrected draft 34

0

2

3

4

5

6

7

-3.14 0 3.14 6.28 9.42 12.57

-3

-1.8

-0.6

0.6

1.8

3

z = [-0.1,0.1]x = [-3.142,12.566] ; y = [-3,3] ;

sin(x) + sin(y), sin(x) + cos(y), cos(x) + sin(y), cos(x) + cos(y)

Figure 9.6

The range determines the 𝑧 value(s) that we take into account. You can also pass a list of colors to be
used. In figure 9.7 this is demonstrated. There we also show a variant foreground cell, which uses a bit
different method for calculating the edges.3

\startMPcode{doublefun}
draw lmt_contour [

xmin = -2*pi, xmax = 2*pi, xstep = .01,
ymin = -3, ymax = 3, ystep = .01,

range = { -.1, .1 },
preamble = "local sin, cos = math.sin, math.cos",
functions = { "sin(x) + sin(y)", "sin(x) + cos(y)" },
background = "bitmap",
foreground = "cell",
linecolor = "white",
linewidth = 1/10,
colors = { (1/2,1/2,1/2), red, green, blue }
level = 3,
linewidth = 6,
cache = true,

] xsized TextWidth ;
\stopMPcode

Here the number of levels depends on the number of functions as each can overlap with another; for
instance the outcome of two functions can overlap or not which means 3 cases, and with a value not
being seen that gives 4 different cases.

\startMPcode{doublefun}
draw lmt_contour [

xmin = -2*pi, xmax = 2*pi, xstep = .01,
ymin = -3, ymax = 3, ystep = .01,

3 This a bit of a playground: more variants might show up in due time.

Contour uncorrected draft 35

0

2

3

-6.28 -3.77 -1.26 1.26 3.77 6.28

-3

-1.8

-0.6

0.6

1.8

3

z = [-0.1,0.1]x = [-6.283,6.283] ; y = [-3,3] ;

sin(x) + sin(y), sin(x) + cos(y)

Figure 9.7

range = { -.1, .1 },
preamble = "local sin, cos = math.sin, math.cos",
functions = {

"sin(x) + sin(y)",
"sin(x) + cos(y)",
"cos(x) + sin(y)",
"cos(x) + cos(y)"

},
background = "bitmap",
foreground = "none",
level = 3,
color = "shade({2/3,0,0},{2/3,1,2/3})"
cache = true,

] xsized TextWidth ;
\stopMPcode

Of course one can wonder how useful showing many functions but it can give nice pictures, as shown in
figure 9.8.

\startMPcode{doublefun}
draw lmt_contour [

xmin = -2*pi, xmax = 2*pi, xstep = .01,
ymin = -3, ymax = 3, ystep = .01,

range = { -.3, .3 },
preamble = "local sin, cos = math.sin, math.cos",
functions = {

"sin(x) + sin(y)",
"sin(x) + cos(y)",
"cos(x) + sin(y)",

Contour uncorrected draft 36

0

2

3

4

5

6

7

-6.28 -3.77 -1.26 1.26 3.77 6.28

-3

-1.8

-0.6

0.6

1.8

3

z = [-0.1,0.1]x = [-6.283,6.283] ; y = [-3,3] ;

sin(x) + sin(y), sin(x) + cos(y), cos(x) + sin(y), cos(x) + cos(y)

Figure 9.8

"cos(x) + cos(y)"
},
background = "bitmap",
foreground = "none",
level = 3,
color = "shade({1,0,0},{0,1,0})"
cache = true,

] xsized TextWidth ;
\stopMPcode

We can enlargen the window, which is demonstrated in figure 9.9. I suppose that such images only make
sense in educational settings.

In figure 9.10 we see different combinations of backgrounds (in color) and foregrounds (edges) in action.

\startMPcode{doublefun}
draw lmt_contour [

xmin = 0, xmax = 4*pi, xstep = 0,
ymin = -6, ymax = 6, ystep = 0,

levels = 5, legend = false, linewidth = 1/2,

preamble = "local sin, cos = math.sin, math.cos",
function = "cos(x) - sin(y)",
color = "shade({1/2,0,0},{0,0,1/2})",

background = "bitmap", foreground = "cell",
] xsized .3TextWidth ;

\stopMPcode

There are quite some settings. Some deal with the background, some with the foreground and quite some
deal with the legend.

Contour uncorrected draft 37

0

2

3

4

5

6

7

-6.28 -3.77 -1.26 1.26 3.77 6.28

-3

-1.8

-0.6

0.6

1.8

3

z = [-0.3,0.3]x = [-6.283,6.283] ; y = [-3,3] ;

sin(x) + sin(y), sin(x) + cos(y), cos(x) + sin(y), cos(x) + cos(y)

Figure 9.9

name type default comment

xmin numeric 0 needs to be set
xmax numeric 0 needs to be set
ymin numeric 0 needs to be set
ymax numeric 0 needs to be set
xstep numeric 0 auto 1/200 when zero
ystep numeric 0 auto 1/200 when zero
checkresult boolean false checks for overflow and NaN
defaultnan numeric 0 the value to be used when NaN
defaultinf numeric 0 the value to be used when overflow

levels numeric 10 number of different levels to show
level numeric only show this level (foreground)

preamble string shortcuts
function string x + y the result z value
functions list multiple functions (overlapping levels)
color string lin(l) the result color value for level l (1 or 3 values)
colors numeric used when set

background string bitmap band, bitmap, shape
foreground string auto cell, edge, shape auto

linewidth numeric .25
linecolor string gray

width numeric 0 automatic when zero
height numeric 0 automatic when zero

trace boolean false

legend string all x y z function range all
legendheight numeric LineHeight

Contour uncorrected draft 38

legendwidth numeric LineHeight
legendgap numeric 0
legenddistance numeric EmWidth
textdistance numeric 2EmWidth/3
functiondistance numeric ExHeight
functionstyle string ConTEXt style name
xformat string @0.2N number format template
yformat string @0.2N number format template
zformat string @0.2N number format template
xstyle string ConTEXt style name
ystyle string ConTEXt style name
zstyle string ConTEXt style name

axisdistance numeric ExHeight
axislinewidth numeric .25
axisoffset numeric ExHeight/4
axiscolor string black
ticklength numeric ExHeight

xtick numeric 5
ytick numeric 5
xlabel numeric 5
ylabel numeric 5

Contour uncorrected draft 39

bitmap edge bitmap cell bitmap none

shape shape shape edge shape none

band edge band cell band none

Figure 9.10

Surface uncorrected draft 40

10 Surface

This is work in progress so only some examples are shown here. Yet to be decided is how we deal with
axis and such.

In figure 10.1 we see an example of a plot with axis as well as lines drawn.

\startMPcode{doublefun}
draw lmt_surface [

preamble = "local sin, cos = math.sin, math.cos",
code = "sin(x*x) - cos(y*y)"
xmin = -3,
xmax = 3,
ymin = -3,
ymax = 3,
xvector = { -0.3, -0.3 },
height = 5cm,
axis = { 40mm, 40mm, 30mm },
clipaxis = true,
axiscolor = "gray",

] xsized .8TextWidth ;
\stopMPcode

Figure 10.1

In figure 10.2 we don't draw the axis and lines. We also use a high resolution.

\startMPcode{doublefun}
draw lmt_surface [

Surface uncorrected draft 41

preamble = "local sin, cos = math.sin, math.cos",
code = "sin(x*x) - cos(y*y)"
color = "f, f/2, 1-f"
color = "f, f, 0"
xstep = .02,
ystep = .02,
xvector = { -0.4, -0.4 },
height = 5cm,
lines = false,

] xsized .8TextWidth ;
\stopMPcode

Figure 10.2

The preliminary set of parameters is:

name type default comment

code string color string"f, 0, 0"
linecolor numeric 1 gray scale
xmin numeric -1
xmax numeric 1
ymin numeric -1
ymax numeric 1
xstep numeric .1
ystep numeric .1
snap numeric .01
xvector list { -0.7, -0.7 }
yvector list { 1, 0 }
zvector list { 0, 1 }
light list { 3, 3, 10 }
bright numeric 100
clip boolean false

Surface uncorrected draft 42

lines boolean true
axis list { }
clipaxis boolean false
axiscolor string "gray"
axislinewidth numeric 1/2

Mesh uncorrected draft 43

11 Mesh

This is more a gimmick than of real practical use. A mesh is a set of paths that gets transformed into
hyperlinks. So, as a start you need to enable these:

\setupinteraction
[state=start,
color=white,
contrastcolor=white]

We just give a bunch of examples of meshes. A path is divided in smaller paths and each of them is part
of the same hyperlink. An application is for instance clickable maps but (so far) only Acrobat supports
such paths.

\startuseMPgraphic{MyPath1}
fill OverlayBox withcolor "darkyellow" ;
save p ; path p[] ;
p1 := unitsquare xysized(OverlayWidth/4, OverlayHeight/4) ;
p2 := unitsquare xysized(2OverlayWidth/4,3OverlayHeight/5) shifted (
OverlayWidth/4,0) ;

p3 := unitsquare xysized(OverlayWidth/4, OverlayHeight) shifted (3
OverlayWidth/4,0) ;

fill p1 withcolor "darkred" ;
fill p2 withcolor "darkblue" ;
fill p3 withcolor "darkgreen" ;
draw lmt_mesh [paths = { p1, p2, p3 }] ;
setbounds currentpicture to OverlayBox ;

\stopuseMPgraphic

Such a definition is used as follows. First we define the mesh as overlay:

\defineoverlay[MyPath1][\useMPgraphic{MyPath1}]

Then, later on, this overlay can be used as background for a button. Here we just jump to another page.
The rendering is shown in figure 11.1.

\button
[height=3cm,
width=4cm,
background=MyPath1,
frame=off]
{Example 1}
[realpage(2)]

More interesting are non-rectangular shapes so we show a bunch of them. You can pass multiple paths,
influence the accuracy by setting the number of steps and show the mesh with the tracing option.

\startuseMPgraphic{MyPath2}
save q ; path q ; q := unitcircle xysized(OverlayWidth,OverlayHeight) ;
save p ; path p ; p := for i=1 upto length(q) :

Mesh uncorrected draft 44

Figure 11.1

(center q) -- (point (i-1) of q) -- (point i of q) -- (center q) --
endfor cycle ;
fill q withcolor "darkgray" ;
draw lmt_mesh [

trace = true,
paths = { p }

] withcolor "darkred" ;

setbounds currentpicture to OverlayBox ;
\stopuseMPgraphic

\startuseMPgraphic{MyPath3}
save q ; path q ; q := unitcircle xysized(OverlayWidth,OverlayHeight)
randomized 3mm ;

fill q withcolor "darkgray" ;
draw lmt_mesh [

trace = true,
paths = { meshed(q,OverlayBox,.05) }

] withcolor "darkgreen" ;
% draw OverlayMesh(q,.025) withcolor "darkgreen" ;
setbounds currentpicture to OverlayBox ;

\stopuseMPgraphic

\startuseMPgraphic{MyPath4}
save q ; path q ; q := unitcircle xysized(OverlayWidth,OverlayHeight)
randomized 3mm ;

fill q withcolor "darkgray" ;
draw lmt_mesh [

trace = true,
auto = true,
step = 0.0125,
paths = { q }

] withcolor "darkyellow" ;
setbounds currentpicture to OverlayBox ;

\stopuseMPgraphic

\startuseMPgraphic{MyPath5}
save q ; path q ; q := unitdiamond xysized(OverlayWidth,OverlayHeight)
randomized 2mm ;

q := q shifted - center q shifted center OverlayBox ;
fill q withcolor "darkgray" ;
draw lmt_mesh [

Mesh uncorrected draft 45

trace = true,
auto = true,
step = 0.0125,
paths = { q }

] withcolor "darkmagenta" ;
setbounds currentpicture to OverlayBox ;

\stopuseMPgraphic

\startuseMPgraphic{MyPath6}
save p ; path p[] ;
p1 := p2 := fullcircle xysized(2OverlayWidth/5,2OverlayHeight/3) ;
p1 := p1 shifted - center p1 shifted center OverlayBox shifted (-1
OverlayWidth/4,0) ;

p2 := p2 shifted - center p2 shifted center OverlayBox shifted (1
OverlayWidth/4,0) ;

fill p1 withcolor "middlegray" ;
fill p2 withcolor "middlegray" ;
draw lmt_mesh [

trace = true,
auto = true,
step = 0.02,
paths = { p1, p2 }

] withcolor "darkcyan" ;
setbounds currentpicture to OverlayBox ;

\stopuseMPgraphic

\startuseMPgraphic{MyPath7}
save p ; path p[] ;
p1 := p2 := fullcircle xysized(2OverlayWidth/5,2OverlayHeight/3) rotated 45
;

p1 := p1 shifted - center p1 shifted center OverlayBox shifted (-1
OverlayWidth/4,0) ;

p2 := p2 shifted - center p2 shifted center OverlayBox shifted (1
OverlayWidth/4,0) ;

fill p1 withcolor "middlegray" ;
fill p2 withcolor "middlegray" ;
draw lmt_mesh [

trace = true,
auto = true,
step = 0.01,
box = OverlayBox enlarged -5mm,
paths = { p1, p2 }

] withcolor "darkcyan" ;
draw OverlayBox enlarged -5mm withcolor "darkgray" ;
setbounds currentpicture to OverlayBox ;

\stopuseMPgraphic

This is typical a feature that, if used at all, needs some experimenting but at least the traced images look
interesting enough. The six examples are shown in figure 11.2.

Mesh uncorrected draft 46

MyPath2MyPath3

MyPath4MyPath5

MyPath6MyPath7

Figure 11.2

Function uncorrected draft 47

12 Function

It is tempting to make helpers that can do a lot. However, that also means that we need to explain a lot.
Instead it makes more sense to have specific helpers and just make another one when needed. Rendering
functions falls into this category. At some point users will come up with specific cases that other users can
use. Therefore, the solution presented here is not the ultimate answer. We start with a simple example:

Figure 12.1

This image is defined as follows:

\startMPcode{doublefun}
draw lmt_function [

xmin = 0, xmax = 20, xstep = .1,
ymin = -2, ymax = 2,

sx = 1mm, xsmall = 80, xlarge = 20,
sy = 4mm, ysmall = 40, ylarge = 4,

linewidth = .025mm, offset = .1mm,

code = "1.5 * math.sind (50 * x - 150)",
]

xsized 8cm
;

\stopMPcode

We can draw multiple functions in one go. The next sample split the drawing over a few ranges and is
defined as follows; in figure 12.2 we see the result.

\startMPcode{doublefun}
draw lmt_function [

xmin = 0, xmax = 20, xstep = .1,
ymin = -2, ymax = 2,

sx = 1mm, xsmall = 80, xlarge = 20,
sy = 4mm, ysmall = 40, ylarge = 4,

Function uncorrected draft 48

linewidth = .025mm, offset = .1mm,

xticks = "bottom",
yticks = "left",
xlabels = "nolimits",
ylabels = "yes",
code = "1.5 * math.sind (50 * x - 150)",

% frame = "ticks",
frame = "sticks",
ycaption = "\strut \rotate[rotation=90]{something vertical, using
\sin{x}}",

xcaption = "\strut something horizontal",
functions = {

[xmin = 1.0, xmax = 7.0, close = true, fillcolor = "darkred"],
[xmin = 7.0, xmax = 12.0, close = true, fillcolor = "darkgreen"],
[xmin = 12.0, xmax = 19.0, close = true, fillcolor = "darkblue"],
[

drawcolor = "darkyellow",
drawsize = 2

]
}

]
xsized TextWidth

;
\stopMPcode

Instead of the same function, we can draw different ones and when we use transparency we get nice
results too.

\definecolor[MyColorR][r=.5,t=.5,a=1]
\definecolor[MyColorG][g=.5,t=.5,a=1]
\definecolor[MyColorB][b=.5,t=.5,a=1]

\startMPcode{doublefun}
draw lmt_function [

xmin = 0, xmax = 20, xstep = .1,
ymin = -1, ymax = 1,

sx = 1mm, xsmall = 80, xlarge = 20,
sy = 4mm, ysmall = 40, ylarge = 4,

linewidth = .025mm, offset = .1mm,

functions = {
[

code = "math.sind (50 * x - 150)",
close = true,
fillcolor = "MyColorR"

],
[

code = "math.cosd (50 * x - 150)",

Function uncorrected draft 49

-2

2

something horizontal

so
m

et
hi

ng
 v

er
tic

al
, u

si
ng

 s
in

𝑥

Figure 12.2

close = true,
fillcolor = "MyColorB"

]
},

]
xsized TextWidth

;
\stopMPcode

It is important to choose a good step. In figure 12.4 we show 4 variants and it is clear that in this case
using straight line segments is better (or at least more efficient with small steps).

\startMPcode{doublefun}
draw lmt_function [

xmin = 0, xmax = 10, xstep = .1,
ymin = -1, ymax = 1,

sx = 1mm, sy = 4mm,

linewidth = .025mm, offset = .1mm,

Function uncorrected draft 50

Figure 12.3

code = "math.sind (50 * x^2 - 150)",
shape = "curve"

]
xsized .45TextWidth

;
\stopMPcode

You can manipulate the axis (a bit) by tweaking the first and last ticks. In the case of figure 12.5 we also
put the shape on top of the axis.

\startMPcode{doublefun}
draw lmt_function [

xfirst = 9, xlast = 21, ylarge = 2, ysmall = 1/5,
yfirst = -1, ylast = 1, xlarge = 2, xsmall = 1/4,

xmin = 10, xmax = 20, xstep = .25,
ymin = -1, ymax = 1,

drawcolor = "darkmagenta",
shape = "steps",
code = "0.5 * math.random(-2,2)",
linewidth = .025mm,
offset = .1mm,
reverse = true,

]
xsized TextWidth

;
\stopMPcode

The whole repertoire of parameters (in case of doubt just check the source code as this kind of code is
not that hard to follow) is:

name type default comment

sx numeric 1mm horizontal scale factor

Function uncorrected draft 51

xstep=.10 and shape="curve" xstep=.01 and shape="curve"

xstep=.10 and shape="line" xstep=.01 and shape="line"

Figure 12.4

Figure 12.5

sy numeric 1mm vertical scale factor
offset numeric 0
xmin numeric 1
xmax numeric 1
xstep numeric 1
xsmall numeric optional step of small ticks
xlarge numeric optional step of large ticks
xlabels string no yes, no or nolimits
xticks string bottom possible locations are top, middle and bottom
xcaption string
ymin numeric 1

Function uncorrected draft 52

ymax numeric 1
ystep numeric 1
ysmall numeric optional step of small ticks
ylarge numeric optional step of large ticks
xfirst numeric left of xmin
xlast numeric right of xmax
yfirst numeric below ymin
ylast numeric above ymax
ylabels string no yes, no or nolimits
yticks string left possible locations are left, middle and right
ycaption string
code string
close boolean false
shape string curve or line
fillcolor string
drawsize numeric 1
drawcolor string
frame string options are yes, ticks and sticks
linewidth numeric .05mm
pointsymbol string like type dots
pointsize numeric 2
pointcolor string
xarrow string
yarrow string
reverse boolean false when true draw the function between axis and labels

Chart uncorrected draft 53

13 Chart

This is another example implementation but it might be handy for simple cases of presenting results.
Of course one can debate the usefulness of certain ways of presenting but here we avoid that discussion.
Let's start with a simple pie chart (figure 13.1).

\startMPcode
draw lmt_chart_circle [

samples = { { 1, 4, 3, 2, 5, 7, 6 } },
percentage = true,
trace = true,

] ;
\stopMPcode

1

4

32

5

7
6

Figure 13.1

As with all these LMTX extensions, you're invited to play with the parameters. in figure 13.2 we see a
variant that adds labels as well as one that has a legend.

The styling of labels and legends can be influenced independently.

\startMPcode
draw lmt_chart_circle [

height = 4cm,
samples = { { 1, 4, 3, 2, 5, 7, 6 } },
percentage = true,
trace = true,
labelcolor = "white",
labelformat = "@0.1f",
labelstyle = "ttxx"

] ;
\stopMPcode

\startMPcode
draw lmt_chart_circle [

height = 4cm,
samples = { { 1, 4, 3, 2, 5, 7, 6 } },
percentage = false,
trace = true,

Chart uncorrected draft 54

linewidth = .125mm,
originsize = 0,
labeloffset = 3cm,
labelstyle = "bfxx",
legendstyle = "tfxx",
legend = {

"first", "second", "third", "fourth",
"fifth", "sixths", "sevenths"

}
] ;
\stopMPcode

1.0

4.0

3.0
2.0

5.0

7.0
6.0

1

4

32

5

7
6

first

second

third

fourth

fifth

sixths

sevenths

Figure 13.2

A second way of rendering are histograms, and the interface is mostly the same. In figure 13.3 we see
two variants

\startMPcode
draw lmt_chart_histogram [

samples = { { 1, 4, 3, 2, 5, 7, 6 } },
percentage = true,
cumulative = true,
trace = true,

] ;
\stopMPcode

and one with two datasets:

\startMPcode
draw lmt_chart_histogram [

samples = {
{ 1, 4, 3, 2, 5, 7, 6 },
{ 1, 2, 3, 4, 5, 6, 7 }

},
background = "lightgray",
trace = true,

] ;
\stopMPcode

Chart uncorrected draft 55

1 4 3 2 5 7 6 1 4 3 2 5 7 61 2 3 4 5 6 7

Figure 13.3

A cumulative variant is shown in figure 13.4 where we also add a background (color).

\startMPpage[offset=5mm]
draw lmt_chart_histogram [

samples = {
{ 1, 4, 3, 2, 5, 7, 6 },
{ 1, 2, 3, 4, 5, 6, 7 }

},
percentage = true,
cumulative = true,
showlabels = false,
backgroundcolor = "lightgray",

] ;
\stopMPpage

Figure 13.4

A different way of using colors is shown in figure 13.5 where each sample gets its own (same) color.

\startMPcode
draw lmt_chart_histogram [

samples = {
{ 1, 4, 3, 2, 5, 7, 6 },
{ 1, 2, 3, 4, 5, 6, 7 }

Chart uncorrected draft 56

},
percentage = true,
cumulative = true,
showlabels = false,
background = "lightgray",
colormode = "local",

] ;
\stopMPcode

Figure 13.5

As with pie charts you can add labels and a legend:

\startMPcode
draw lmt_chart_histogram [

height = 6cm,
samples = { { 1, 4, 3, 2, 5, 7, 6 } },
percentage = true,
cumulative = true,
trace = true,
labelstyle = "ttxx",
labelanchor = "top",
labelcolor = "white",
backgroundcolor = "middlegray",

] ;
\stopMPcode

The previous and next examples are shown in figure 13.6. The height specified here concerns the graphic
and excludes the labels,

\startMPcode
draw lmt_chart_histogram [

height = 6cm,
width = 10mm,
samples = { { 1, 4, 3, 2, 5, 7, 6 } },
trace = true,
maximum = 7.5,
linewidth = 1mm,
originsize = 0,
labelanchor = "bot",

Chart uncorrected draft 57

labelcolor = "black"
labelstyle = "bfxx"
legendstyle = "tfxx",
labelstrut = "yes",
legend = {

"first", "second", "third", "fourth",
"fifth", "sixths", "sevenths"

}
] ;

\stopMPcode

1 4 3 2 5 7 6 1 4 3 2 5 7 6

first

second

third

fourth

fifth

sixths

sevenths

Figure 13.6

The third category concerns bar charts that run horizontal. Again we see similar options driving the
rendering (figure 13.7).

\startMPcode
draw lmt_chart_bar [

samples = { { 1, 4, 3, 2, 5, 7, 6 } },
percentage = true,
cumulative = true,
trace = true,

] ;
\stopMPcode

\startMPcode
draw lmt_chart_bar [

samples = { { 1, 4, 3, 2, 5, 7, 6 } },
percentage = true,
cumulative = true,
showlabels = false,
backgroundcolor = "lightgray",

] ;
\stopMPcode

Determining the offset of labels is manual work:

Chart uncorrected draft 58

\startMPcode
draw lmt_chart_bar [

width = 4cm,
height = 5mm,
samples = { { 1, 4, 3, 2, 5, 7, 6 } },
percentage = true,
cumulative = true,
trace = true,
labelcolor = "white",
labelstyle = "ttxx",
labelanchor = "rt",
labeloffset = .25EmWidth,
backgroundcolor = "middlegray",

] ;
\stopMPcode

1
4
3
2
5
7
6

1

4

3

2

5

7

6

Figure 13.7

Here is one with a legend (rendered in figure 13.8):

\startMPcode
draw lmt_chart_bar [

width = 8cm,
height = 10mm,
samples = { { 1, 4, 3, 2, 5, 7, 6 } },
trace = true,
maximum = 7.5,
linewidth = 1mm,
originsize = 0,
labelanchor = "lft",
labelcolor = "black"
labelstyle = "bfxx"
legendstyle = "tfxx",
labelstrut = "yes",
legend = {

"first", "second", "third", "fourth",
"fifth", "sixths", "sevenths"

}
] ;
\stopMPcode

Chart uncorrected draft 59

1

4

3

2

5

7

6

first

second

third

fourth

fifth

sixths

sevenths

Figure 13.8

You can have labels per dataset as well as draw multiple datasets in one image, see figure 13.9:

\startMPcode
draw lmt_chart_bar [

samples = {
{ 1, 4, 3, 2, 5, 7, 6 },
{ 3, 2, 5, 7, 5, 6, 1 }

},
labels = {

{ "a1", "b1", "c1", "d1", "e1", "f1", "g1" },
{ "a2", "b2", "c2", "d2", "e2", "f2", "g2" }

},
labeloffset = -EmWidth,
labelanchor = "center",
labelstyle = "ttxx",
trace = true,
center = true,

] ;

draw lmt_chart_bar [
samples = {

{ 1, 4, 3, 2, 5, 7, 6 }
},
labels = {

{ "a", "b", "c", "d", "e", "f", "g" }
},
labeloffset = -EmWidth,
labelanchor = "center",
trace = true,
center = true,

] shifted (10cm,0) ;
\stopMPcode

Chart uncorrected draft 60

a1

b1

c1

d1

e1

f1

g1

a2

b2

c2

d2

e2

f2

g2

a
b
c
d
e
f
g

Figure 13.9

name type default comment

originsize numeric 1mm
trace boolean false
showlabels boolean true
center boolean false

samples list
cumulative boolean false

percentage boolean false
maximum numeric 0
distance numeric 1mm

labels list
labelstyle string
labelformat string
labelstrut string auto
labelanchor string
labeloffset numeric 0
labelfraction numeric 0.8
labelcolor string

backgroundcolor string
drawcolor string white
fillcolors list primary (dark) colors
colormode string global or local

linewidth numeric .25mm

legendcolor string
legendstyle string
legend list

Pie charts have:

name default

Chart uncorrected draft 61

height 5cm
width 5mm
labelanchor
labeloffset 0
labelstrut no

Histograms come with:

name default

height 5cm
width 5mm
labelanchor bot
labeloffset 1mm
labelstrut auto

Bar charts use:

name default

height 5cm
width 5mm
labelanchor lft
labeloffset 1mm
labelstrut no

SVG uncorrected draft 62

14 SVG

There is not that much to tell about this command. It translates an svg image to MetaPost operators. We
took a few images from a mozilla emoji font:

\startMPcode
draw lmt_svg [

filename = "mozilla-svg-002.svg",
height = 2cm,
width = 8cm,

] ;
\stopMPcode

Because we get pictures, you can mess around with them:

\startMPcode
picture p ; p := lmt_svg [filename = "mozilla-svg-001.svg"] ;
numeric w ; w := bbwidth(p) ;
draw p ;
draw p xscaled -1 shifted (2.5*w,0);
draw p rotatedaround(center p,45) shifted (3.0*w,0) ;
draw image (

for i within p : if filled i :
draw pathpart i withcolor green ;

fi endfor ;
) shifted (4.5*w,0);
draw image (

for i within p : if filled i :
fill pathpart i withcolor red withtransparency (1,.25) ;

fi endfor ;
) shifted (6*w,0);

\stopMPcode

Of course. often you won't know in advance what is inside the image and how (well) it has been defined
so the previous example is more about showing some MetaPost muscle.

The supported parameters are:

SVG uncorrected draft 63

name type default comment

filename path
width numeric
height numeric

Poisson uncorrected draft 64

15 Poisson

When, after a post on the ConTEXt mailing list, Aditya pointed me to an article on mazes I ended up at
poisson distributions which to me looks nicer than what I normally do, fill a grid and then randomize
the resulting positions. With some hooks this can be used for interesting patterns too. The algorithm is
based on the discussion at:

http://devmag.org.za/2009/05/03/poisson-disk-sampling

Other websites mention some variants on that but I saw no reason to look into those in detail. I can
imagine more random related variants in this domain so consider this an appetizer. The user is rather
simple because some macro is assumed to deal with the rendering of the distributed points. We just
show some examples (because the interface might evolve).

\startMPcode
draw lmt_poisson [

width = 40,
height = 40,
distance = 1,
count = 20,
macro = "draw"

] xsized 4cm ;
\stopMPcode

\startMPcode
vardef tst (expr x, y, i, n) =

fill fullcircle scaled (10+10*(i/n)) shifted (10x,10y)
withcolor "darkblue" withtransparency (1,.5) ;

enddef ;

draw lmt_poisson [
width = 50,
height = 50,
distance = 1,
count = 20,
macro = "tst",
arguments = 4

] xsized 6cm ;
\stopMPcode

Poisson uncorrected draft 65

\startMPcode
vardef tst (expr x, y, i, n) =

fill fulldiamond scaled (5+5*(i/n)) randomized 2 shifted (10x,10y)
withcolor "darkgreen" ;

enddef ;

draw lmt_poisson [
width = 50,
height = 50,
distance = 1,
count = 20,
macro = "tst",
initialx = 10,
initialy = 10,
arguments = 4

] xsized 6cm ;
\stopMPcode

\startMPcode{doublefun}
vardef tst (expr x, y, i, n) =

fill fulldiamond randomized (.2*i/n) shifted (x,y);
enddef ;

draw lmt_poisson [

Poisson uncorrected draft 66

width = 150,
height = 150,
distance = 1,
count = 20,
macro = "tst",
arguments = 4

] xsized 6cm withcolor "darkmagenta" ;
\stopMPcode

\startMPcode
vardef tst (expr x, y, i, n) =

draw externalfigure "cow.pdf" ysized (10+5*i/n) shifted (10x,10y);
enddef ;
draw lmt_poisson [

width = 20,
height = 20,
distance = 1,
count = 20,
macro = "tst"
arguments = 4,

] xsized 6cm ;
\stopMPcode

The supported parameters are:

Poisson uncorrected draft 67

name type default comment

width numeric 50
height numeric 50
distance numeric 1
count numeric 20
macro string "draw"
initialx numeric 10
initialy numeric 10
arguments numeric 4

Fonts uncorrected draft 68

16 Fonts

Fonts are interesting phenomena but can also be quite hairy. Shapes can be missing or not to your liking.
There can be bugs too. Control over fonts has always been on the agenda of TEX macro packages, and
ConTEXt provides a lot of control, especially in MkIV. In LMTX we add some more to that: we bring back
MetaFont's but now in the MetaPost way. A simple example shows how this is (maybe I should say: will
be) done.

We define three simple shapes and do that (for now) in the simplefun instance because that's what is
used when generating the glyphs.

\startMPcalculation{simplefun}
vardef TestGlyphLB =

image (
fill (unitsquare xscaled 10 yscaled 16 shifted (0,-3))

withcolor "darkred" withtransparency (1,.5)
;

)
enddef ;

vardef TestGlyphRB =
image (

fill (unitcircle xscaled 15 yscaled 12 shifted (0,-2))
withcolor "darkblue" withtransparency (1,.5)

;
)

enddef ;

vardef TestGlyphFS =
image (

fill (unittriangle xscaled 15 yscaled 12 shifted (0,-2))
withcolor "darkgreen" withtransparency (1,.5)

;
)

enddef ;
\stopMPcalculation

This is not that spectacular, not is the following:

\startMPcalculation{simplefun}
lmt_registerglyphs [

name = "test",
units = 10, % 1000

] ;

lmt_registerglyph [
category = "test",
unicode = 123,
code = "draw TestGlyphLB ;",

Fonts uncorrected draft 69

width = 10, % 1000
height = 13, % 1300
depth = 3 % 300

] ;

lmt_registerglyph [
category = "test",
unicode = 125,
code = "draw TestGlyphRB ;",
width = 15,
height = 10,
depth = 2

] ;

lmt_registerglyph [
category = "test",
unicode = "/",
code = "draw TestGlyphFS ;",
width = 15,
height = 10,
depth = 2

] ;

\stopMPcalculation

We now define a font. We always use a font as starting point which has the advantage that we always get
something reasonable when we test. Of course you can use this mps font feature with other fonts too.

\definefontfeature[metapost][metapost=test] % or: mps={category=test}

\definefont[MyFontA][Serif*metapost @ 10bp]
\definefont[MyFontB][Serif*metapost @ 12bp]

These fonts can now be used:

\MyFontA \dorecurse{20}{\{ /#1/ \} }\par
\MyFontB \dorecurse{20}{\{ /#1/ \} }\par

We get some useless text but it demonstrates the idea:

{/1/}{/2/}{/3/}{/4/}{/5/}{/6/}{/7/}
{/8/}{/9/}{/10/}{/11/}{/12/}{/13/}{/14/
}{/15/}{/16/}{/17/}{/18/}{/19/}{/20/}

{/1/}{/2/}{/3/}{/4/}{/5/}{/6/}
{/7/}{/8/}{/9/}{/10/}{/11/}{/12/
}{/13/}{/14/}{/15/}{/16/}{/17/}{
/18/}{/19/}{/20/}

Fonts uncorrected draft 70

If you know a bit more about ConTEXt you could think: so what, wasn't this already possible? Sure, there
are various ways to achieve similar effects, but the method described here has a few advantages: it's
relatively easy and we're talking about real fonts here. This means that using the shapes for characters
is pretty efficient.

A more realistic example is given next. It is a subset of what is available in the ConTEXt core.

\startMPcalculation{simplefun}

pen SymbolPen ; SymbolPen := pencircle scaled 1/4 ;

vardef SymbolBullet =
fill unitcircle scaled 3 shifted (1.5,1.5) withpen SymbolPen

enddef ;
vardef SymbolSquare =

draw unitsquare scaled (3-1/16) shifted (1.5,1.5) withpen SymbolPen
enddef ;
vardef SymbolBlackDiamond =

fillup unitdiamond scaled (3-1/16) shifted (1.5,1.5) withpen SymbolPen
enddef ;
vardef SymbolNotDef =

draw center unitcircle
scaled 3
shifted (1.5,1.5)
withpen SymbolPen scaled 4

enddef ;

lmt_registerglyphs [
name = "symbols",
units = 10,
usecolor = true,
width = 6,
height = 6,
depth = 0,
code = "SymbolNotDef ;",

] ;

lmt_registerglyph [category = "symbols", unicode = "0x2022",
code = "SymbolBullet ;"

] ;
lmt_registerglyph [category = "symbols", unicode = "0x25A1",

code = "SymbolSquare ;"
] ;
lmt_registerglyph [category = "symbols", unicode = "0x25C6",

code = "SymbolBlackDiamond ;"
] ;

\stopMPcalculation

We could use these symbols in for instance itemize symbols. You might notice the potential difference
in bullets:

Fonts uncorrected draft 71

\definefontfeature[metapost][metapost=symbols]

\definefont[MyFont] [Serif*metapost sa 1]

\startitemize[packed]
\startitem {\MyFont • }\quad Regular rendering. \stopitem
\startitem {\MyFont\red • }\quad Rendering with color.
\stopitem

\startitem {\MyFont\blue\showglyphs • }\quad Idem but with boundingboxes
shown. \stopitem

\stopitemize

• • □ ◆ Regular rendering.
• • □ ◆ Rendering with color.
• • □ ◆ Idem but with boundingboxes shown.

When blown up, these symbols look as follows:

•□◆•□◆•□◆

You can use these tricks with basically any font, so also with math fonts. However, at least for now, you
need to define these before the font gets loaded.

\startMPcalculation{simplefun}

pen KindergartenPen ; KindergartenPen := pencircle scaled 1 ;

% 10 x 10 grid

vardef KindergartenEqual =
draw image

(
draw (2,6) -- (9,5) ;
draw (2,4) -- (8,3) ;

)
shifted (0,-2)
withpen KindergartenPen
withcolor "KindergartenEqual"

enddef ;
vardef KindergartenPlus =

draw image
(

draw (1,4) -- (9,5) ;
draw (4,1) -- (5,8) ;

)
shifted (0,-2)
withpen KindergartenPen
withcolor "KindergartenPlus"

Fonts uncorrected draft 72

enddef ;
vardef KindergartenMinus =

draw image
(

draw (1,5) -- (9,4) ;
)
shifted (0,-2)
withpen KindergartenPen
withcolor "KindergartenMinus"

enddef ;
vardef KindergartenTimes =

draw image
(

draw (2,1) -- (9,8) ;
draw (8,1) -- (2,8) ;

)
shifted (0,-2)
withpen KindergartenPen
withcolor "KindergartenTimes"

enddef ;
vardef KindergartenDivided =

draw image
(

draw (2,1) -- (8,9) ;
)
shifted (0,-2)
withpen KindergartenPen
withcolor "KindergartenDivided"

enddef ;

lmt_registerglyphs [
name = "kindergarten",
units = 10,

% usecolor = true,
width = 10,
height = 8,
depth = 2,

] ;

lmt_registerglyph [category = "kindergarten", unicode = "0x003D",
code = "KindergartenEqual"

] ;
lmt_registerglyph [category = "kindergarten", unicode = "0x002B",

code = "KindergartenPlus"
] ;
lmt_registerglyph [category = "kindergarten", unicode = "0x2212",

code = "KindergartenMinus"
] ;
lmt_registerglyph [category = "kindergarten", unicode = "0x00D7",

Fonts uncorrected draft 73

code = "KindergartenTimes"
] ;
lmt_registerglyph [category = "kindergarten", unicode = "0x002F",

code = "KindergartenDivided"
] ;

\stopMPcalculation

We also define the colors. If we leave usecolor to true, the text colors will be taken.

\definecolor[KindergartenEqual] [darkgreen]
\definecolor[KindergartenPlus] [darkred]
\definecolor[KindergartenMinus] [darkred]
\definecolor[KindergartenTimes] [darkblue]
\definecolor[KindergartenDivided][darkblue]

\definefontfeature[mathextra][metapost=kindergarten]

Here is an example:

\switchtobodyfont[cambria]

$ y = 2 \times x + a - b / 3 $

Scaled up:

𝑦= 2× 𝑥+ 𝑎− 𝑏/3
Of course this won't work out well (yet) with extensible yet, due to related definitions for which we don't
have an interface yet. There is one thing that you need to keep in mind: the fonts are flushed when the
document gets finalized so you have to make sure that colors are defined at the level that they are still
valid at that time. So best put color definitions like the above in the document style.

This is an experimental interface anyway so we don't explain the parameters yet as there might be more
of them.

Sometimes examples can be made from answers to questions on the mailing list, like the following:

\startMPcalculation{simplefun}
vardef QuotationDash =

draw image (
interim linecap := squared ;
save l ; l := 0.2 ;
draw (l/2,2) -- (15-l/2,2) withpen pencircle scaled l ;

)
enddef ;

lmt_registerglyphs [
name = "symbols",
units = 10,

Fonts uncorrected draft 74

usecolor = true,
width = 15,
height = 2.1,
depth = 0,

] ;

lmt_registerglyph [category = "symbols", unicode = "0x2015", code = "
QuotationDash ;"] ;

\stopMPcalculation

\definefontfeature[default][default][metapost=symbols]

Of course you need to figure out how to enter the equivalent of \char "2015 and/or the font used in your
editor should have that character too. Here the wide dash is about twice the \emdash.

Color uncorrected draft 75

17 Color

17.1 Lab colors
There are by now plenty of examples made by users that use color and MetaFun provides all kind of
helpers. So do we need more? When I play around with things or when users come with questions that
then result in a nice looking graphic, the result might en dup as example of coding. The following is an
example of showing of colors. We have a helper that goes from a so called lab specification to rgb and it
does that via xyz transformations. It makes no real sense to interface this beyond this converter. We use
this opportunity to demonstrate how to make an interface.

\startMPdefinitions
vardef cielabmatrix(expr l, mina, maxa, minb, maxb, stp) =
image (
for a = mina step stp until maxa :
for b = minb step stp until maxb :
draw (a,b) withcolor labtorgb(l,a,b) ;

endfor ;
endfor ;

)
enddef ;

\stopMPdefinitions

Here we define a macro that makes a color matrix. It can be used as follows

\startcombination[nx=4,ny=1]
{\startMPcode draw cielabmatrix(20, -100, 100, -100, 100, 5) ysized 35mm
withpen pencircle scaled 2.5 ; \stopMPcode} {\type {l = 20}}

{\startMPcode draw cielabmatrix(40, -100, 100, -100, 100, 5) ysized 35mm
withpen pencircle scaled 2.5 ; \stopMPcode} {\type {l = 40}}

{\startMPcode draw cielabmatrix(60, -100, 100, -100, 100, 5) ysized 35mm
withpen pencircle scaled 2.5 ; \stopMPcode} {\type {l = 60}}

{\startMPcode draw cielabmatrix(80, -100, 100, -100, 100, 5) ysized 35mm
withpen pencircle scaled 2.5 ; \stopMPcode} {\type {l = 80}}

\stopcombination

l = 20 l = 40 l = 60 l = 80

One can of course mess around a bit:

\startcombination[nx=4,ny=1]

Color uncorrected draft 76

{\startMPcode draw cielabmatrix(20, -100, 100, -100, 100, 10) ysized 35mm
randomized 1 withpen pensquare scaled 4 ; \stopMPcode} {\type {l = 20}}

{\startMPcode draw cielabmatrix(40, -100, 100, -100, 100, 10) ysized 35mm
randomized 1 withpen pensquare scaled 4 ; \stopMPcode} {\type {l = 40}}

{\startMPcode draw cielabmatrix(60, -100, 100, -100, 100, 10) ysized 35mm
randomized 1 withpen pensquare scaled 4 ; \stopMPcode} {\type {l = 60}}

{\startMPcode draw cielabmatrix(80, -100, 100, -100, 100, 10) ysized 35mm
randomized 1 withpen pensquare scaled 4 ; \stopMPcode} {\type {l = 80}}

\stopcombination

l = 20 l = 40 l = 60 l = 80

Normally, when you don't go beyond this kind of usage, a simple macro like the above will do. But when
you want to make something that is upward compatible (which is one of the principles behind the Con
TEXt user interface(s), you can do this:

\startcombination[nx=4,ny=1]
{\startMPcode draw lmt_labtorgb [l = 20, step = 20] ysized 35mm withpen
pencircle scaled 8 ; \stopMPcode} {\type {l=20}}

{\startMPcode draw lmt_labtorgb [l = 40, step = 20] ysized 35mm withpen
pencircle scaled 8 ; \stopMPcode} {\type {l=40}}

{\startMPcode draw lmt_labtorgb [l = 60, step = 20] ysized 35mm withpen
pencircle scaled 8 ; \stopMPcode} {\type {l=60}}

{\startMPcode draw lmt_labtorgb [l = 80, step = 20] ysized 35mm withpen
pencircle scaled 8 ; \stopMPcode} {\type {l=80}}

\stopcombination

l=20 l=40 l=60 l=80

This is a predefined macro in the reserved lmt_ namespace (don't use that one yourself, create your
own). First we preset the possible parameters:

presetparameters "labtorgb" [
mina = -100,

Color uncorrected draft 77

maxa = 100,
minb = -100,
maxb = 100,
step = 5,
l = 50,

] ;

Next we define the main interface macro:

def lmt_labtorgb = applyparameters "labtorgb" "lmt_do_labtorgb" enddef ;

Last we do the actual implementation, which looks a lot like the one we started with:

vardef lmt_do_labtorgb =
image (
pushparameters "labtorgb" ;
save l ; l := getparameter "l" ;
for a = getparameter "mina" step getparameter "step"

until getparameter "maxa" :
for b = getparameter "minb" step getparameter "step"

until getparameter "maxb" :
draw (a,b) withcolor labtorgb(l,a,b) ;

endfor ;
endfor ;

popparameters ;
)

enddef ;

Of course we can now add all kind of extra features but this is what we currently have. Maybe this doesn't
belong in the MetaFun core but it's not that much code and a nice demo. After all, there is much in there
that is seldom used.

A perceptive color space that uses the lab model is lhc. Here is an example of how that can be used:

\startMPdefinitions
vardef lchcolorcircle(expr l, c, n) =

image (
save p, h ; path p ; numeric h ;
p := arcpointlist n of fullcircle ;
for i within p :

h := i*360/n ;
draw

pathpoint scaled 50
withpen pencircle scaled (120/n)
withcolor lchtorgb(l,c,h) ;

draw
textext ("\tt\bf" & decimal h)
scaled .4
shifted (pathpoint scaled 50)
withcolor white ;

endfor ;

Color uncorrected draft 78

)
enddef ;
\stopMPdefinitions

Of course you can come up with another representation than this but here is how it looks:

\startMPcode
draw image (

draw lchcolorcircle(75,100,24) ;
draw lchcolorcircle(50,100,24) scaled .75 ;
draw lchcolorcircle(25,100,24) scaled .50 ;

) ysized 4cm ;
\stopMPcode

You can get rather nice color pallets by manipulating the axis without really knowing what color you get.
The h value is in angles and shown inside the circles.

0

30

60
90

120

150

180

210

240
270

300

330

0

30

60
90

120

150

180

210

240
270

300

330

0

30

60
90

120

150

180

210

240
270

300

330

0

30

60
90

120

150

180

210

240
270

300

330

0

30

60
90

120

150

180

210

240
270

300

330

0

30

60
90

120

150

180

210

240
270

300

330

l=75,c=100 l=50,c=100 l=25,c=100 l=75,c=25 l=50,c=25 l=25,c=25

Of course we can again wrap this into a parameter driven macro, this time lmt_lchcirclewhich accepts
l, c, steps and a labels boolean.

17.2 Transparency
Although transparency is independent from color we discuss one aspect here. Where color is sort of
native to MetaPost, especially when we talk rgb and cmyk, other color spaces are implemented using so
called prescripts, think “information bound to paths and related wrappers”.

When you do this:

\startMPcode
path c ; c := fullcircle scaled 1cm ;
picture p ; p := image (

fill c shifted (0mm,0) withcolor "darkred" ;
fill c shifted (5mm,0) withcolor "darkgreen" ;
fill c shifted (10mm,0) withcolor "darkblue" ;

) ;

draw p ; draw p shifted (3cm,0) withcolor "middlegray" ;
\stopMPcode

You will notice that the picture gets recolored so the color properties set on the picture are applied to
separate elements that make it. A picture itself is actually just a list of objects and it has no properties
of its own. A way around this is to wrap it in a group, bound or clip which basically means something:

Color uncorrected draft 79

begin, list of objects, end. By putting properties on the wrapper we can support features that apply to
what gets wrapped without adapting the properties directly.

Because transparency is also implemented with prescripts we have a problem: should it apply to the
wrapper or to everything? In the LuaTEX version of the MetaPost library the scripts get assigned to the first
element that supports them and because there only paths can have these properties, you cannot simply
change the transparency without looping over the picture and redraw it.

\startMPcode
picture q ; q := image (

fill c shifted (0mm,0) withcolor "darkcyan" withtransparency (1,.5);
fill c shifted (5mm,0) withcolor "darkmagenta" withtransparency (1,.5);
fill c shifted (10mm,0) withcolor "darkyellow" withtransparency (1,.5);

) ;

draw q ; draw q shifted (3cm,0) withtransparency (1,.25) ;
\stopMPcode

In LuaMetaTEX we have a way to assign the properties to the elements so we get three less transparent
circles:

In MkIV only the first circle becomes lighter.

\startMPcode
picture r ; r := image (

draw p ;
draw q shifted (7cm,0cm) ;

) ;

draw r ;
draw r shifted (3cm,0) withtransparency (1,.75) ;
\stopMPcode

This example shows that when we draw p and q we get the elements at the same level (flattened) so we
can indeed apply the transparency to all of them.

So, keep in mind that this only works in MkXL and not in MkVI (unless we also upgrade LuaTEX to support
this).

Lines uncorrected draft 80

18 Lines

We assume that when you arrived here you already know how to deal with drawing lines including the
way they get connected. When you draw a line some properties are controlled by variables which forces
you to save existing values when you temporarily adapts them.

\startMPcode
draw (0, 0) -- (20, 0) withcolor "darkyellow" ;
draw (0,-1) -- (20,-1) withlinecap butt withcolor "darkred" ;
draw (0,-2) -- (20,-2) withlinecap squared withcolor "darkgreen" ;
draw (0,-3) -- (20,-3) -- (0,-4) withlinejoin squared withcolor "darkblue" ;
\stopMPcode

These with features are a LuaMetaTEX extension:

Paths uncorrected draft 81

19 Paths

19.1 Introduction
In the end MetaPost is all about creating (beautiful) paths. In this chapter we introduce some extensions
to the engine that can be of help when constructing paths. Some relate to combining paths segments,
others to generating the points.

19.2 Cycles
The cycle commands closes a path: the end gets connected to the start. One way to construct a path
stepwise is using a for loop, as in:

\startMPcode
draw (

(0,sin(0)) for i=pi/20 step pi/20 until 2pi :
.. (i,sin(i))

endfor
) xysized(8cm,2cm)
withpen pencircle scaled 1mm
withcolor "darkred" ;
\stopMPcode

This looks kind of ugly because we need to make sure that we only put the .. between points. If we have
a closed path we can do this:

\startMPcode
draw (

for i=0 step pi/20 until 2pi :
(i,sin(i)) ..

endfor cycle
) xysized(8cm,2cm)
withpen pencircle scaled 1mm
withcolor "darkblue" ;
\stopMPcode

Paths uncorrected draft 82

But that is not what we want here. It is for this reason that we have a different operator, one that closes a
path without cycling:

\startMPcode
draw (

for i=0 step pi/20 until 2pi :
(i,sin(i)) ..

endfor nocycle
) xysized(8cm,2cm)
withpen pencircle scaled 1mm
withcolor "darkgreen" ;
\stopMPcode

19.3 Combining paths
The & concat operator requires the last point of the previous and the first point of the current path to be
the same. This restriction is lifted with the &&, &&& and &&&& commands.

\startMPcode
def Example(expr p, q) =

draw image (
drawpathonly (p && q) shifted (0u,0) ;
drawpathonly (p &&& q) shifted (5u,0) ;
drawpathonly (p &&&& q) shifted (10u,0) ;

) ;
enddef ;

path p[] ; numeric u ; u := 1cm ;
p[1] := (0u,0u) -- (1u,0u) -- (1u,1u) ;
p[2] := (1u,1u) -- (2u,1u) -- (2u,0u) ;

Example(p[1], p[2]) ;

Example(p[1] shifted (0u,-2u), p[2] shifted (1u,-2u)) ;
\stopMPcode

0 1

2
3 4

5
0 1

2 3

4
0 1

2
3 4

5

0 1

2 3 4

5
0 1

2 3

4
0 1

2 3 4

5

Paths uncorrected draft 83

The precise working can be best be seen from what path we get. The single ampersand just does a concat
but issues an error when the paths don't touch so we leave that one out.

\startMPdefinitions
path p, q, r ;
p := (0,0) -- (1,0) ;
q := (2,0) -- (3,0) ;
r := (1,0) -- (3,0) ;
vardef Example(expr p) =
% show (p);
drawpathonly p scaled 4cm ;

enddef ;
\stopMPdefinitions

This gives us:

0 1 2 3

(0,0) .. controls (0.33,0) and (0.67,0) .. % p && q
(1,0) {end} .. controls (2, 0) and (1, 0) ..
(2,0) {begin} .. controls (2.33,0) and (2.67,0) ..
(3,0)

0 12 3

(0,0) .. controls (0.33,0) and (0.67,0) .. % p && r
(1,0) {end} .. controls (1, 0) and (1, 0) ..
(1,0) {begin} .. controls (1.67,0) and (2.33,0) ..
(3,0)

0 1 2

(0,0) .. controls (0.33,0) and (0.67,0) .. % p &&& q
(1,0) .. controls (2.33,0) and (2.67,0) ..
(3,0)

0 1 2

(0,0) .. controls (0.33,0) and (0.67,0) .. % p &&& r
(1,0) .. controls (1.67,0) and (2.33,0) ..
(3,0)

0 1 2 3

(0,0) .. controls (0.33,0) and (0.67,0) .. % p &&&& q
(1,0) {end} .. controls (2, 0) and (1, 0) ..
(2,0) {begin} .. controls (2.33,0) and (2.67,0) ..
(3,0)

Paths uncorrected draft 84

0 12 3

(0,0) .. controls (0.33,0) and (0.67,0) .. % p &&&& r
(1,0) {end} .. controls (1, 0) and (1, 0) ..
(1,0) {begin} .. controls (1.67,0) and (2.33,0) ..
(3,0)

If we have one (concat) ampersand we check if the paths touch, error or move on. If we have three (tol
erant concat) or four (tolerant append) ampersands we check if the end and begin are the same and if
so, we remove one and set the controls points halfway, and then degrade to one (concat) or two (append)
ampersands. Finally when (then) we have one ampersand (concat) we connect with some curl magic but
when we have two (append) we connect without the curl magic: we let the left and right control points be
the points.

Here is another example of usage. Watch how &&& doesn't influence an already closed curve.

\startMPcode
path p[] ;

p[1] := (0,0) -- (100,0) -- (100,100) ; for i=2 upto 5 : p[i] := p[1] ; endfor ;

p[1] := p[1] -- cycle ; p[1] := p[1] -- cycle ; p[1] := p[1] -- cycle ;
p[2] := p[2] -- cycle ; p[2] := p[2] &&& cycle ; p[2] := p[2] &&& cycle ;
p[3] := p[3] -- cycle ; p[3] := p[3] &&&& cycle ; p[3] := p[3] &&&& cycle ;
p[4] := p[4] &&& cycle ;
p[5] := p[5] &&&& cycle ;

for i=1 upto 5 :
% show(p[i]) ;
fill p[i] shifted (i*110,0) withcolor "middlegray" ;
draw p[i] shifted (i*110,0) withcolor "darkred" withpen pencircle scaled 5 ;

endfor ;
currentpicture := currentpicture xsized TextWidth ;
\stopMPcode

The paths are, here shown with less precision:

(0,0) .. controls (33.33,0) and (66.67,-0)
.. (100,0) .. controls (100,33.33) and (100,66.67)
.. (100,100) .. controls (66.67,66.67) and (33.33,33.33)
.. (0,0) .. controls (0,0) and (0,0)
.. (0,0) .. controls (0,0) and (0,0)

Paths uncorrected draft 85

.. cycle

(0,0) .. controls (33.33,0) and (66.67,-0)
.. (100,0) .. controls (100,33.33) and (100,66.67)
.. (100,100) .. controls (66.67,66.67) and (33.33,33.33)
.. cycle

(0,0) {begin} .. controls (33.33,0) and (66.67,-0)
.. (100,0) .. controls (100,33.33) and (100,66.67)
.. (100,100) .. controls (66.67,66.67) and (33.33,33.33)
.. (0,0) {end} .. controls (0,0) and (0,0) % duplicate {end} is
.. (0,0) {end} .. controls (0,0) and (0,0) % sort of an error
.. cycle

(100,100) .. controls (33.33,0) and (66.67,-0)
.. (100,0) .. controls (100,33.33) and (100,66.67)
.. cycle

(0,0) {begin} .. controls (33.33,0) and (66.67,-0)
.. (100,0) .. controls (100,33.33) and (100,66.67)
.. (100,100) {end} .. controls (0,0) and (100,100)
.. cycle

These somewhat complicated rules also relate to the intended application: the backend can apply fill
or eofill in which case also cycles are involved as the following examples demonstrate:

\startMPdefinitions
path p, q, r ;
p := fullcircle ;
q := reverse fullcircle ;
r := fullcircle shifted (1/2,0) ;
vardef Example(expr p) =

image (
eofill p scaled 4cm withcolor "middlegray" ;
drawpathonly p scaled 4cm ;

)
enddef ;
\stopMPdefinitions

\startMPcode
draw Example(p &&& q &&& cycle) ;
draw Example(p &&& cycle &&& q &&& cycle) shifted (8cm,0) ;

\stopMPcode

Paths uncorrected draft 86

0

1
2

3

4

5
6

7

8

9

10

11

12

13

14

15

0

1
2

3

4

5
6

7

8

9

10

11

12

13

14

15

\startMPcode
draw Example(p &&& r &&& cycle) ;
draw Example(p &&& cycle &&& r &&& cycle) shifted (8cm,0) ;

\stopMPcode

0

1
2

3

4

5
6

7

8

9
10

11

12

13
14

15

0

1
2

3

4

5
6

7

8

9
10

11

12

13
14

15

\startMPcode
draw Example(p &&&& q &&&& cycle) ;
draw Example(p &&&& cycle &&&& q &&&& cycle) shifted (8cm,0) ;

\stopMPcode

0

1
2

3

4

5
6

7

8 9

10

11

12

13

14

15

16

17 0

1
2

3

4

5
6

7

8 910

11

12

13

14

15

16

17

18

\startMPcode
draw Example(p &&&& r &&&& cycle) ;
draw Example(p &&&& cycle &&&& r &&&& cycle) shifted (8cm,0) ;

\stopMPcode

Paths uncorrected draft 87

0

1
2

3

4

5
6

7

8 9

10
11

12

13

14
15

16

17

0

1
2

3

4

5
6

7

8
9 10

11
12

13

14

15
16

17

18

19.4 Implicit points
In the MetaPost library that comes with LuaMetaTEX we have a few extensions that relate to paths. You
might wonder why we need these but some relate to the fact that paths can be generated programmat
ically. A prominent operator (or separator) is .. and contrary to what one might expect the frequently
used -- is a macro:

def -- = { curl 1 } .. { curl 1 } enddef ;

This involves interpreting nine tokens as part of expanding the macro and in practice that is fast even
for huge paths. Nevertheless we now have a -- primitive that involves less interpreting and also avoids
some intermediate memory allocation of numbers. Of course you can still define it as macro.

When you look at PostScript you'll notice that it has operators for relative and absolute positioning in the
horizontal, vertical or combined direction. In LuaMetaTEX we now have similar operators that we will
demonstrate with a few examples.

\startMPcode
drawarrow origin

-- xrelative 300
-- yrelative 20
-- xrelative -300
-- cycle

withpen pencircle scaled 2
withcolor "darkred" ;
\stopMPcode

In the next example we show a relative position combined with an absolute and we define them as macros.
You basically gets what goes under the name ‘turtle graphics’:

\startMPcode
save h ; def h = -- xrelative enddef ;
save v ; def v = -- yabsolute enddef ;

drawarrow origin
h 30 v 20 h 30 v 30
h 30 v 10 h 30 v 50
h 30 v 60 h 30 v 10

Paths uncorrected draft 88

withpen pencircle scaled 2
withcolor "darkred" ;
\stopMPcode

When you provide a pair to xabsolute or yabsolute, the xpart is the (relative) advance and the second
the absolute coordinate.

\startMPcode
draw origin

-- yabsolute(10,30)
-- yabsolute(20,20)
-- yabsolute(30,10)
-- yabsolute(40,20)
-- yabsolute(50,30)
-- yabsolute(60,20)
-- yabsolute(70,10)
-- yabsolute(80,20)
-- yabsolute(90,30)

withpen pencircle scaled 2
withcolor "darkred" ;
\stopMPcode

The xyabsolute is sort of redundant and is equivalent to just a pair, but maybe there is a use for it. When
the two coordinates are the same you can use a numeric.

\startMPcode
draw origin

-- xyabsolute(10, 10) % -- xyabsolute 10
-- xyabsolute(20, 10)
-- xyabsolute(30,-10)
-- xyabsolute(40,-10)
-- xyabsolute(50, 10)
-- xyabsolute(60, 10)
-- xyabsolute(70,-10)
-- xyabsolute(80,-10)

withpen pencircle scaled 2
withcolor "darkred" ;
\stopMPcode

Paths uncorrected draft 89

The relative variant also can take a pair and numeric, as in:

\startMPcode
draw origin

-- xyrelative 10
-- xyrelative 10
-- xyrelative(10,-10)
-- xyrelative(10,-10)
-- xyrelative 10
-- xyrelative 10
-- xyrelative(10,-10)
-- xyrelative(10,-10)

withpen pencircle scaled 2
withcolor "darkred" ;
\stopMPcode

In these examples we used -- but you can mix in .. and control point related operations, although the
later is somewhat less intuitive here.

\startMPcode
draw yabsolute(10,30)

.. yabsolute(20,20)

.. yabsolute(10,10)

.. yabsolute(20,20)

.. yabsolute(10,30)

.. yabsolute(20,20)

.. yabsolute(10,10)

.. yabsolute(20,20)

.. yabsolute(10,30)
withpen pencircle scaled 2
withcolor "darkred" ;
\stopMPcode

And with most features, users will likely find a use for it:

\startMPcode
draw for i=1 upto 5 :

yabsolute(10,30) ---
yabsolute(20,20) ...
yabsolute(10,10) ---
yabsolute(20,20) ...

endfor nocycle
withpen pencircle scaled 2
withcolor "darkred" ;
\stopMPcode

Paths uncorrected draft 90

Here is a more impressive example, the result is shown in figure ??:

\startMPcode
for n=10 upto 40 :

path p ; p := (
for i = 0 step pi/n until pi :

yabsolute(cos(i)^2-sin(i)^2,sin(i)^2-cos(i)^2) --
endfor cycle

) ;
draw p

withpen pencircle scaled 1/20
withcolor "darkred" withtransparency (1,.25) ;

endfor ;
currentpicture := currentpicture xysized (TextWidth,.25TextWidth) ;
\stopMPcode

Figure 19.1 Combined relative x and absolute y positioning

19.5 Control points
Most users will create paths by using .., ..., -- and --- and accept what they get by the looks. If your
expectations are more strict you might use tension or curlwith directions and vectors for the so called
control points between connections. In figure 19.2 you see not only controls in action but also two
operators that can be used to set the first and second control point. For the record: if you use controls
without and the singular pair will be used for both control points.

\startMPcode
path p, q, r, s ;

p = origin {dir 25} .. (80,0) .. controls (80, 0) and (100,40) .. (140,30)
.. {dir 0} (180,0) ;

q = origin {dir 25} .. (80,0) .. controls (100,40) and (140,30) .. (140,30)
.. {dir 0} (180,0) ;

r = origin {dir 25} .. (80,0) .. secondcontrol (100,40) .. (140,30)
.. {dir 0} (180,0) ;

s = origin {dir 25} .. (80,0) .. firstcontrol (100,40) .. (140,30)
.. {dir 0} (180,0) ;

Paths uncorrected draft 91

def Example(expr p, t, c) =
draw p ;
drawpoints p withcolor "middlegray" ;
drawcontrollines p withpen pencircle scaled .3 withcolor c ;
drawcontrolpoints p withpen pencircle scaled 2 withcolor c ;
label.lft("\smallinfofont current", point 1 of p) ;
label.top("\smallinfofont next", point 2 of p) ;
draw thetextext.rt("\infofont path " & t, (point 3 of p) shifted (5,0)) ;

enddef ;

draw image (
Example(p, "p", "darkred") ; currentpicture := currentpicture yshifted 50 ;
Example(q, "q", "darkblue") ; currentpicture := currentpicture yshifted 50 ;
Example(r, "r", "darkred") ; currentpicture := currentpicture yshifted 50 ;
Example(s, "s", "darkblue") ; currentpicture := currentpicture yshifted 50 ;

) xsized TextWidth ;
\stopMPcode

19.6 Arcs
In PostScript and svg we have an arc command but not in MetaPost. In LMTX we provide a macro that
does something similar:

\startMPcode
draw

(0,0) --
(arc(0,180) scaled 30 shifted (0,30)) --
cycle

withpen pencircle scaled 2
withcolor "darkred" ;
\stopMPcode

The result is not spectacular:

Instead of a primitive with five arguments and the prescribed line drawn from the current point to the
beginning of the arc we just use .., scaled for the radius, and shifted for the origin. It actually permits
more advanced trickery.

\startMPcode
draw

(0,0) ..
(arc(30,240) xscaled 60 yscaled 30 shifted (0,30)) ..
cycle

withpen pencircle scaled 2
withcolor "darkred" ;

Paths uncorrected draft 92

current

next

path p

current

next

path q

current

next

path r

current

next

path s

Figure 19.2 Three ways to set the control points.

\stopMPcode

Here time we get smooth connections:

but because we scale differently also a different kind of arc: it is no longer a circle segment, which is often
the intended use of arc.

Paths uncorrected draft 93

19.7 Loops
The MetaPost program is a follow up on MetaFont, which primary target was to design fonts. The paths
that make op glyphs are often not that large and because in most cases we don't know in advance how
large a path is they are implemented as linked lists. Now consider a large paths, with say 500 knots. The
following assignment:

pair a ; a := point 359 of p ;

has to jump across 358 knots before it reaches the requested point. Let's take an example of drawing a
function by (naively) stepping over values:

\startMPcode
path p ; p := for i=0 step 4pi/500 until 4pi: (i,sin(i)) -- endfor nocycle ;
p := p xysized(TextWidth,2cm) ;
draw p ;
\stopMPcode

Of course we can just calculate the point directly but here we just want to illustrate a problem.

\startMPcode
draw p ; for i=0 step 5 until length(p) :

drawdot point i of p withpen pencircle scaled 2 ;
endfor ;
\stopMPcode

For 500 points, on a modern computer running over the list is rather fast but when we are talking 5000
points is gets noticeable, and given what MetaPost is used for, having many complex graphics calculated
at runtime can have some impact on runtime.

Of course we can just calculate the point directly but here we just want to illustrate a problem. Where the
previous loop takes 0.002 seconds, the second loop needs 0.001 seconds:

\startMPcode
pair p ; for i within p :

if i mod 5 == 0 :
drawdot pathpoint withpen pencircle scaled 2 ;

fi ;
endfor ;
\stopMPcode

These numbers are for assigning the point to a pair variable so that we don't take into account the extra
drawing (and backend) overhead. The difference in runtime can be neglected but what if we go to 5000
points? Not unsurprisingly we go down from 0.142 seconds to 0.004 seconds. There are plenty examples
where runtime can be impacted, for instance when one first takes the xpart point i and then the ypart
point i.

Paths uncorrected draft 94

One motivation for adding a more efficient loop for paths is that in generative art one has such long parts
and drawing that took tens of minutes or more now can be generated in seconds. Another motivation is
in analyzing and manipulating paths. In that case we also need access to the control points and maybe
even preceding or succeeding points. In figure 19.3 we show the output of the following code:

\startMPcode
path p ; p := fullcircle scaled 10cm ;
fill p withcolor "darkred" ;
draw p withpen pencircle scaled 1mm withcolor "middleblue" ;

for i within p :
draw pathpoint withpen pencircle scaled 4mm withcolor "middlegray" ;
draw pathprecontrol withpen pencircle scaled 2mm withcolor "middlegreen" ;
draw pathpostcontrol withpen pencircle scaled 2mm withcolor "middlegreen" ;
draw textext("\ttbf" & decimal i) shifted .6[deltapoint -2,origin] withcolor
white ;

draw textext("\ttbf" & decimal i) shifted .4[pathpoint ,origin] withcolor
white ;

draw textext("\ttbf" & decimal i) shifted .2[deltapoint 2,origin] withcolor
white ;

endfor ;
\stopMPcode

The MetaPost library in LuaMetaTEX uses double linked lists for paths so going back and forward is a
rather cheap operation.

0

0

0

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

Figure 19.3 Fast looping over paths.

A nice application of this feature is the following, where we use yet another point property, pathdirec
tion:

Paths uncorrected draft 95

vardef dashing (expr pth, shp, stp) =
for i within arcpointlist stp of pth :

shp
rotated angle(pathdirection)
shifted pathpoint

&&
endfor nocycle

enddef ;

With:

\startMPcode
path p ; p := unitsquare xysized (TextWidth,1cm) ;
draw p withpen pencircle scaled .2mm withcolor darkblue ;
fill dashing (p, triangle scaled 1mm, 100) && cycle withcolor "darkred" ;
\stopMPcode

we get:

It is worth noticing that the path returned by dashing is actually a combined path where the pen gets lifted
between the subpaths. This is what the && does. The nocycle is there to intercept the last ‘connector’
(which of course could also have been a -- or ... So we end up with an open path, which why in case of
a fill we need to close it by cycle. In the next example we show all the accessors:

\startMPcode[instance=scaledfun]
path p; p := (fullsquare scaled 3 && fullsquare rotated 45 scaled 2 && cycle) ;

for i within p :
message(

"index " & decimal pathindex
& ", lastindex " & decimal pathlastindex
& ", length " & decimal pathlength
& ", first " & if pathfirst : "true" else : "false" fi
& ", last " & if pathlast : "true" else : "false" fi
& ", state " & decimal pathstate % end/begin subpath
& ", point " & ddecimal pathpoint
& ", postcontrol " & ddecimal pathprecontrol
& ", precontrol " & ddecimal pathpostcontrol
& ", direction " & ddecimal pathdirection
& ", delta " & ddecimal deltapoint 1

);
endfor ;

eofill p xysized (TextWidth, 2cm) withcolor "darkred" ;
\stopMPcode

If you want to see the messages you need to process it yourself, but this is how the ten point shape looks
like:

Paths uncorrected draft 96

19.8 Randomized paths
When randomizing a path the points move and when such a path has to bound a specific areas that can
result in overlap which what is bounded.

\startMPcode
path p ; p := fullsquare xyscaled (10cm,2cm) ;
fill p withcolor "darkred" ;
draw p randomized 3mm withpen pencircle scaled 1mm withcolor "middlegray";
setbounds currentpicture to p ;
\stopMPcode

Here are two variants that randomize a path but keep the points where they are. They might be better
suited for cases where there is text within the area.

\startMPcode
path p ; p := fullsquare xyscaled (10cm,2cm) ;
fill p withcolor "darkblue" ;
draw p randomizedcontrols 3mm withpen pencircle scaled 1mm withcolor "middlegray
";

setbounds currentpicture to p ;
\stopMPcode

\startMPcode
path p ; p := fullsquare xyscaled (10cm,2cm) ;
fill p withcolor "darkyellow" ;
draw p randomrotatedcontrols 15 withpen pencircle scaled 1mm withcolor "
middlegray";

setbounds currentpicture to p ;
\stopMPcode

Paths uncorrected draft 97

19.9 Connecting
In LuaMetaTEX the -- operator is a primitive, like .. and when exploring this we came up with this
example that demonstrates the difference with (still a macro) ---.

\startMPcode
path p[] ;
p[1] = origin -- (100, 0) .. (75, 50) .. (50, 100) .. (25, 50) .. cycle ;
p[2] = origin --- (100, 0) .. (75, 50) .. (50, 100) .. (25, 50) .. cycle ;
p[3] = origin -- (100, 0) ... (75, 50) ... (50, 100) ... (25, 50) ... cycle ;
p[4] = origin --- (100, 0) ... (75, 50) ... (50, 100) ... (25, 50) ... cycle ;

draw p[1] withpen pencircle scaled 3bp withcolor "darkblue" ;
draw p[2] withpen pencircle scaled 2bp withcolor "darkyellow" ;
drawpoints p[1] withpen pencircle scaled 3bp withcolor darkred ;

draw image (
draw p[1] withpen pencircle scaled 4bp withcolor "darkblue" ;
draw p[2] withpen pencircle scaled 3bp withcolor "darkyellow" ;
draw p[3] withpen pencircle scaled 2bp withcolor "darkred" ;
draw p[4] withpen pencircle scaled 1bp withcolor "darkgreen" ;

) shifted (150,0) ;
\stopMPcode

Where ... makes a more tight curve, --- has consequences for the way a curve gets connected to a
straight line segment.

19.10 Curvature
Internally MetaPost only has curves but when a path is output it makes sense to use lines when possible.
The ConTEXt backend takes care of that (and further optimizations) but you can check yourself too.

\startMPcode
def Test(expr p, c) =

draw
p
withpen pencircle scaled 2mm
withcolor c ;

draw
textext("\bf " & if not (subpath(2,3) of p hascurvature 0.02) : "not"
else : "" fi & " curved")

Paths uncorrected draft 98

shifted center p ;
enddef ;

Test(fullcircle scaled 3cm shifted (0cm,0),"darkred");
Test(fullsquare scaled 3cm shifted (4cm,0),"darkblue");
Test(fullsquare scaled 3cm shifted (8cm,0) randomizedcontrols 1cm,"darkgreen");
\stopMPcode

The hascurvature macro is a primary and applies a curvature criterium to a (sub)path. The default
tolerance in the backend is 131/65536 or 0.002. The same default is used for eliminating points that ‘are
the same’.

curved not curved curved

In the rare case that the backend decides for straight lines while actually there is a curve, you can use
withcurvature 1 to bypass the check.

19.11 Joining paths
Say that you have three paths:

path p[] ;
p[1] := (0,0) -- (100,0) ;
p[2] := (101,0) -- (100,100) ;
p[3] := (100,101) ;

If you join these with:

draw p[1] & p[2] & p[3] -- cycle ;

You will get an error message telling that the paths don't have common points so that they can't be joined.
This can be a problem when your snippets are the result of cutting up a path. In practice the difference
between the to be joined coordinates is small, so we provide a way to get around this problem:

\startMPcode
interim jointolerance := 5eps ;
draw (0,0) -- (100,0) & (100+4eps,0) -- (100,20) & (100,20+2eps) -- cycle

withpen pencircle scaled 2 withcolor "darkred" ;
\stopMPcode

Up to the tolerance is accepted as difference in either direction, so indeed we get a valid result:

Larger values can give a more noticeable side effect:

Paths uncorrected draft 99

\startMPcode
interim jointolerance := 20 ;
draw (0,0) -- (100,0) & (110,10) -- (100,40) & (100,50) -- cycle

withpen pencircle scaled 2 withcolor "darkred" ;
\stopMPcode

It all depends on your need it this is considered okay:

As with everything TEX and MetaPost, once you see what is possible it can be abused:

\startMPcode
interim jointolerance := 20 ;
randomseed := 10 ;
draw for i=1 upto 200 :

(i,50 randomized 10) --
endfor nocycle

withpen pencircle scaled .1 ;
randomseed := 10 ;
draw for i=1 upto 200 :

(i,50 randomized 10) if odd i : & else : -- fi
endfor nocycle

withcolor "darkred" ;
\stopMPcode

We leave it up to the reader to decide how the red line can be interpreted.

Here is another nice example:

\startMPcode
path p[] ;
p[1] := origin -- (100,50) ;
p[2] := (200,50) -- (300,0) ;
draw p[1] && p[2] withpen pencircle scaled 4 withcolor darkgreen ;
draw p[1] -- p[2] withpen pencircle scaled 2 withcolor "orange" ;
interim jointolerance := 100 ;
draw p[1] & p[2] withpen pencircle scaled 1 withcolor darkblue ;

\stopMPcode

Watch how we get a curve:

Envelopes uncorrected draft 100

20 Envelopes

20.1 Introduction
Envelopes are what MetaPost makes for a non circular path. A circular path is supported directly by Post
Script and pdf. When such a oath is rotated, it is still somewhat easy because MetaPost outputs the shape
twice, transformed differently, but in the end we have one curve, and filling the right space the two curves
bound which is native behavior of path filling. When the pen is more complex, that is not a transformed
basic pencircle, MetaPost will calculate a so called envelope. This chapter limits the explanation to what
we can observe and better explanations about pens can be found in the MetaFont book.

20.2 Pens
The code involves is non trivial and can only work reliable for paths made from straight lines which which
is why a pen is always reduced to a path with straight lines. Internally the term ‘convex hull’ is used. In
LuaMetaTEX we have that operation as primitive.

\startMPcode
pen mypen ; mypen := makepen (fullcircle);
draw origin withpen mypen scaled 100 withcolor "darkblue" ;
\stopMPcode

By drawing just one point we see the pen:

Indeed the circle has been simplified here.

\startMPcode
def ShowPaths(expr pth) =

path p[] ;
p[0] := pth scaled 50;
p[1] := uncontrolled p[0] ; % show(p[1]);
p[2] := convexed p[0] ; % show(p[2]);
draw p[0] shifted (0,0) withpen pencircle scaled 5 withcolor "darkgreen" ;
draw p[1] shifted (100,0) withpen pencircle scaled 5 withcolor "darkred" ;
draw p[2] shifted (160,0) withpen pencircle scaled 5 withcolor "darkblue" ;
draw p[1] shifted (260,0) withpen pencircle scaled 5 withcolor "darkred" ;
draw p[2] shifted (260,0) withpen pencircle scaled 5 withcolor "white" ;

enddef ;

ShowPaths(fullcircle) ;

Envelopes uncorrected draft 101

\stopMPcode

In this case the straightforward removal of control points gives the same result as first calculating the
convex hull.

\startMPcode
ShowPaths(fullcircle randomized .1) ;
\stopMPcode

In this example we still seem to get what we expect:

\startMPcode
ShowPaths(fullcircle randomized .4) ;
\stopMPcode

But a bit of exaggeration shows that we don't get the same:

It all has to do with heuristics and nasty border cases when we turn corners. Here is what these (not
randomized) paths look like, first the uncontrolled:

(25,0) .. controls (22.56,5.89) and (20.12,11.79)
.. (17,68,17,68) .. controls (11.79,20.12) and (5.89,22.56)
.. (0,25) .. controls (-5.89,22.56) and (-11.79,20.12)
.. (-17,68,17,68) .. controls (-20.12,11.79) and (-22.56,5.89)
.. (-25,0) .. controls (-22.56,-5.89) and (-20.12,-11.79)
.. (-17,68,-17,68) .. controls (-11.79,-20.12) and (-5.89,-22.56)
.. (0,-25) .. controls (5.89,-22.56) and (11.79,-20.12)
.. (17,68,-17,68) .. controls (20.12,-11.79) and (22.56,-5.89)
.. cycle

and here is the unconvexed:

(-25,0) .. controls (-22.56,-5.89) and (-20.12,-11.79)
.. (-17,68,-17,68) .. controls (-11.79,-20.12) and (-5.89,-22.56)
.. (0,-25) .. controls (5.89,-22.56) and (11.79,-20.12)
.. (17,68,-17,68) .. controls (20.12,-11.79) and (22.56,-5.89)
.. (25,0) .. controls (22.56,5.89) and (20.12,11.79)

Envelopes uncorrected draft 102

.. (17,68,17,68) .. controls (11.79,20.12) and (5.89,22.56)

.. (0,25) .. controls (-5.89,22.56) and (-11.79,20.12)

.. (-17,68,17,68) .. controls (-20.12,11.79) and (-22.56,5.89)

.. cycle

Now, in order to see what convexing has to do with pens we also introduce a ‘nep’ which is a pen that
doesn't get its path convexed. We mainly have this variant available for experimenting and documenta
tion purposes. Take these definitions:

\startMPdefinitions
path PthP ; PthP := (fullcircle scaled 100) randomized 80 ;
pen PenP ; PenP := makepen PthP ;
nep NepP ; NepP := makenep PthP ;
path ConP ; ConP := convexed PthP ;
path UncP ; UncP := uncontrolled PthP ;
\stopMPdefinitions

That are used in:

\startMPdefinitions
def Pth =

draw PthP ;
enddef ;
def Pen =

draw origin withpen PenP withcolor "darkred" withtransparency (1,.5) ;
enddef ;
def Nep =

draw origin withpen NepP withcolor "darkblue" withtransparency (1,.5);
enddef ;
def Con =

fill ConP withpen pencircle scaled 0 withcolor "darkgreen" withtransparency
(1,.5) ;

enddef ;
def Unc =

fill UncP withpen pencircle scaled 0 withcolor "darkyellow" withtransparency
(1,.5) ;

enddef ;
\stopMPdefinitions

The main reason for showing the differences in figure 20.1 is that one should be aware of possible side
effects

In case you doubt if all this matters, if we use a not to weird path, we're fine, as is demonstrated in fig
ure 20.2; here we used

PthP := fullcircle yscaled 80 xscaled 140 rotated 45 ;

And when we use such rather normal (non extreme) paths for pens we're ready for envelopes.

Envelopes uncorrected draft 103

pen nep pen convexed pen uncontrolled

nep pen nep convexed nep uncontrolled

convexed pen convexed nep convexed
uncontrolled

uncontrolled pen uncontrolled nep uncontrolled
convexed

Figure 20.1 Pens are paths with straight lines.

Envelopes uncorrected draft 104

pen nep pen convexed pen uncontrolled

nep pen nep convexed nep uncontrolled

convexed pen convexed nep convexed uncontrolled

uncontrolled pen uncontrolled nep uncontrolled convexed

Figure 20.2 When using decent pens the results will be consistent.

Envelopes uncorrected draft 105

20.3 Usage
An envelop is the outline that we get when we run a pen over a path. An envelop is (of course) a closed
path. Here is a simple example:

\startMPcode
path p ; p := origin -- (100,10) -- cycle ;
path e ; e := envelope pensquare scaled 10 rotated 45 of p ;

draw e withpen pencircle scaled 2 withcolor "darkred" ;
draw p withpen pencircle scaled 2 withcolor "darkgray" ;

fill e shifted (120,0) withcolor "darkred" ;
draw p shifted (120,0) withcolor "lightgray" withpen pencircle scaled 2 ;

fill e shifted (240,0)
withshademethod "linear"
withshadecolors ("darkred","lightgray") ;

\stopMPcode

This also demonstrates that this way you can apply a shade to a path:

One problem with envelopes is that you can get unexpected results so let's try to explore some details.
We start by defining a main path, a pen, a path from the pen, and two envelopes.

\startMPcode
path PthP ; PthP := fullcircle xysized(10cm,2cm) ;
pen PenP ; PenP := pensquare scaled 2mm rotated 45 ;
path PthU ; PthU := fullsquare scaled 2mm rotated 45 ;
path PatP ; PatP := makepath PenP ;

path PthI ; PthI := envelope PenP of reverse PthP ;
path PthO ; PthO := envelope PenP of PthP ;

fill PthI && PthO && cycle withcolor "lightgray" ;

draw PthI withcolor "darkred" ;
draw PthO withcolor "darkgreen" ;
draw PthP dashed evenly ;
\stopMPcode

Watch the difference between the two envelopes: one is the result from traveling the pen clockwise and
one from running anti-clockwise:

Envelopes uncorrected draft 106

We can emulate running the pen over the path:

\startMPcode
fill PthI && PthO && cycle withcolor "darkgray" ;
fill

for i within (arcpointlist 50 of PthP) :
PatP shifted pathpoint &&

endfor cycle
withcolor "middlegray" ;

\stopMPcode

Instead of drawing 50 paths, we draw an efficient single one made from 50 segments and we get this:

If you look closely at the first rendering you will notice an artifact in the inner envelope.

We can get rid of this with a helper macro:

\startMPcode
draw reducedenvelope(PthI) withpen pencircle scaled .4mm withcolor "darkred" ;
\stopMPcode

Of course you get no guarantees but here it works:

One reason why the helper is not in the core is that it doesn't catch all cases:

\startMPcode
path p ; p := fullcircle scaled 4cm ;
pen e ; e := pensquare scaled 3mm ;
draw envelope e of p ;
draw envelope e of reverse p ;
p := p rotated eps shifted (5cm,0) ;
draw envelope e of p ;
draw envelope e of reverse p ;
p := p shifted (5cm,0) ;
draw p enveloped e ;
draw (reverse p) enveloped e ;
\stopMPcode

Envelopes uncorrected draft 107

Watch how a tiny rotations rid us of the weird rectangle, and the helper makes three extra inflected points
go away but we're still stuck with an imperfection.

When we only fill the envelope we don't suffer from this'because the artifacts stay within the bounds.
Sometimes rotating the pen by eps also helps.

\startMPcode
path p ; p := fullcircle scaled 4cm ;
pen e ; e := pensquare scaled 3mm ;
fill

(envelope e of p) && (envelope e of reverse p) && cycle
withcolor "darkblue" ;

draw % just show the artifacts:
(envelope e of p) && (envelope e of reverse p) && cycle
withcolor "white" ;

\stopMPcode

20.4 Details
For those who are interested in seeing what goes on behind the scenes, this section shows some examples
that we made when writing an article about envelopes. We start with a couple of definitions

\startMPdefinitions
loadmodule("misc") ;

path mypaths[] ;
path mypens[] ;

mypens[1] := fullcircle scaled 15mm ;
mypens[2] := fulldiamond scaled 15mm ;

Envelopes uncorrected draft 108

mypens[3] := fulltriangle scaled 15mm ;
mypens[4] := fullsquare scaled 15mm ; % randomized 4mm ;
mypens[5] := starring(-1/3) scaled 15mm ;
mypens[6] := starring(-1/2) scaled 15mm ;
mypens[7] := starring(-eps) scaled 15mm ;
mypens[8] := starring(1) scaled 15mm ;
mypens[9] := starring(1/2) scaled 15mm ;
mypens[10] := starring(eps) scaled 15mm ;

mypaths[1] := fullcircle scaled 10cm ;
mypaths[2] := ((0,0) -- (1/2,1/2) -- (2/2,0)) scaled 10cm ;
mypaths[3] := ((0,0) -- (1/2,1/2) -- (2/2,0) -- cycle) scaled 10cm ;
\stopMPdefinitions

We are not going to use all these shapes and pens here but you might want to try out some yourself. We
Figure 20.3 we apply a so called pensquare to the paths. In Figure 20.4 we use a star but MetaPost will
turn this one into a rectangle. In Figure 20.5 we also use star but here the points are used.

\startMPcode
draw showenvelope(mypaths[1], mypens[4]) ;
draw showenvelope(mypaths[2], mypens[4]) shifted (10cm, 1cm) ;
draw showenvelope(mypaths[3], mypens[4]) shifted (10cm,-6cm) ;
\stopMPcode

01

2

3

456

7

89

10

11

1213 14

15

0

1

2 34

5

6

78

9

101112

13

14

15

0

1
2

34

5
6

7

89

0
1

2

34

5

6
7

89

0

1

23

4

5
0

1 2
3

4

56

Figure 20.3 How pen 4 creates an envelope.

\startMPcode
draw showenvelope(mypaths[1], mypens[6]) ;
draw showenvelope(mypaths[2], mypens[6]) shifted (10cm, 1cm) ;
draw showenvelope(mypaths[3], mypens[6]) shifted (10cm,-6cm) ;
\stopMPcode
\stopMPcode

Envelopes uncorrected draft 109

01

2

3

456

7

89

10

11

1213 14

15

0

1

2 34

5

6

78

9

101112

13

14

15

0

1
2

34

5
6

7

89

0
1

2

34

5

6
7

89

0

1

23

4

5
0

1 2
3

4

56

Figure 20.4 How pen 6 creates an envelope.

\startMPcode
draw showenvelope(mypaths[1], mypens[9]) ;
draw showenvelope(mypaths[2], mypens[9]) shifted (10cm, 1cm) ;
draw showenvelope(mypaths[3], mypens[9]) shifted (10cm,-6cm) ;
\stopMPcode

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

0

1

2

3

4

56

7

8

9

10

11

12

13

14

0

1

2

3

4

5

6

7

8

9

10

11

12

1314

0

1

23

4

5

0

1

2

3 4

5

6

7

8

9

10

Figure 20.5 How pen 9 creates an envelope.

Envelopes uncorrected draft 110

20.5 Reducing
If you watch the third shape in the previous examples, the last figure differs in that it has a symmetri
cal inner envelope. We can actually use this knowledge to define a pensquare that is better suited for en
velopes. We take this example:

\startMPdefinitions
def ExamplePaths =

path PthA ; PthA := fullcircle scaled 5cm ;
path PthB ; PthB := triangle scaled 5cm ;

draw envelope pensquare scaled 10mm of reverse PthA
withpen pencircle scaled 2mm
withcolor "darkblue"

;
draw envelope pensquare scaled 10mm of reverse PthB

withpen pencircle scaled 2mm
withcolor "darkblue"

;

draw (reverse PthA) enveloped (pensquare scaled 10mm)
withpen pencircle scaled 2mm
withcolor "darkred"

;
draw (reverse PthB) enveloped (pensquare scaled 10mm)

withpen pencircle scaled 2mm
withcolor "darkred"

;
enddef ;
\stopMPdefinitions

We define two renderings, one with the normal pensquare definition:

\startMPcode
pensquare := makepen(unitsquare shifted -(.5,.5)) ; ExamplePaths ;
\stopMPcode

and one with an alternative definition where we have middle points on the edges that stick out one eps:

\startMPcode
pensquare := makepen((starring(eps) scaled 1/2)) ; ExamplePaths ;
\stopMPcode

This gives figure 20.6. The blue extensions are what we get without clean up but at least the alternative
has symmetrical ears.

When you have a somewhat weird envelope the reducedenvelope macro might be able to improve it.
The <pth> enveloped <pen> primary macro has this built in.

Envelopes uncorrected draft 111

default pensquare alternative pensquare

Figure 20.6 An alternative pensquare.

Groups uncorrected draft 112

21 Groups

This is just a quick example of an experimental features.

\startMPcode
fill fullcircle scaled 2cm shifted (5mm,2cm) withcolor "darkblue" ;
fill fullcircle scaled 2cm shifted (15mm,2cm) withcolor "darkblue" ;

fill fullcircle scaled 2cm shifted (5mm,-2cm) withcolor "darkgreen" ;
fill fullcircle scaled 2cm shifted (15mm,-2cm) withcolor "darkgreen" ;

draw image (
fill fullcircle scaled 4cm withcolor "darkred" ;
fill fullcircle scaled 4cm shifted (2cm,0) withcolor "darkred" ;

setgroup currentpicture to boundingbox currentpicture
withtransparency (1,.5) ;

) ;

draw image (
fill fullcircle scaled 3cm withcolor "darkyellow"

withtransparency (1,.5) ;
fill fullcircle scaled 3cm shifted (2cm,0) withcolor "darkyellow"

withtransparency (1,.5) ;
) ;

addbackground withcolor "darkgray" ;
\stopMPcode

A group create an object that when transparency is applied is treated as a group.

(Groups might become more powerful in the future, like reusable components but then some more jug
gling is needed.)

Potrace uncorrected draft 113

22 Potrace

22.1 Introduction
The potrace connection targets at bitmaps. You can think of logos that only exist as bitmaps while outlines
are preferred, but in this case we actually think more of bitmaps that the user lays out. In order to give
an impression what we are talking about I give three simple examples:

bytes buffer filename

Here we vectorize bitmaps with Peter Selingers potrace library, that we built in LuaMetaTEX. We can di
rectly feed bytes in a MetaFun blob:

\startMPcode
fill

lmt_potraced [bytes =
"01111111111111111111111111111100
11000000000000000000000000000110
11000000000000000000000000000011
11000000000000000000000000000011
11000000000000000000000000000011
01100000000000000000000000000011
00111111111111111111111111111110",

] ysized 1cm
withcolor "darkblue"
withpen pencircle scaled 1 ;

\stopMPcode

But we can also go via a file that has the same data:

\startMPcode
fill

lmt_potraced [
filename = "potraced.txt",

] ysized 1cm
withcolor "darkgreen"
withpen pencircle scaled 1 ;

\stopMPcode

Of course we can also use buffers:

\startMPcode
fill

lmt_potraced [
buffer = "potraced",

] ysized 1cm

Potrace uncorrected draft 114

withcolor "darkred"
withpen pencircle scaled 1 ;

\stopMPcode

You feed a bitmap specification and get back a MetaPost path, likely multiple subpaths sewed together.
You can of course draw and fill that path, or store it in a path variable and then do both.

In the following sections we will explore the various options and some tricks. The main message in this
section is that you need to look at bitmaps with vectorized eyes because that is what you get in the end:
a vector representation.

22.2 Functions
todo

22.3 Icons
When Mikael Sundqvist and I were playing with potrace in MetaFun his girls came up with this pattern.

\startMPcode
fill

lmt_potraced [bytes =
"001111100
010000010
100000001
101101101
100000001
101000101
100111001
010000010
001111100",
size = 1,

] xysized (3cm,3cm)
withcolor "middleorange" ;

\stopMPcode

This produces the following icon. The somewhat asymmetrical shape gives it a charm, and it is surprising
how little code is needed. This picture inspired Willi Egger to make a ten by ten composition gadget for
the attendants of the 2023 ConTEXt meeting that was used in a tutorial.

We use this to demonstrate a few more features of the interface:

Potrace uncorrected draft 115

\startMPcode
draw

lmt_potraced [bytes =
"..11111..
.1.....1.
1.......1
1.11.11.1
1.......1
1.1...1.1
1..111..1
.1.....1.
..11111..",
polygon = true,
size = 1,

] xysized (3cm,3cm)
withcolor "darkblue"
withpen pencircle scaled 1mm ;

\stopMPcode

This contour is actually accurate:

We can color some components:

\startMPcode
draw image (

lmt_startpotraced [bytes =
"..11111..
.1.....1.
1.......1
1.22.22.1
1.......1
1.3...3.1
1..333..1
.1.....1.
..11111.."

] ;
fill lmt_potraced [value = "1", size = 1]

withcolor "darkred" ;
fill lmt_potraced [value = "3", size = 1]

withcolor "darkgreen" ;
fill lmt_potraced [value = "2", size = 0]

withcolor "darkblue" ;

Potrace uncorrected draft 116

lmt_stoppotraced ;
) xysized (3cm,3cm) ;
\stopMPcode

Of course there must be enough distinction (white space) between the shapes:

Again we show the polygons:

\startMPcode
draw image (

lmt_startpotraced [bytes =
"..11111..
.1.....1.
1.......1
1.22.22.1
1.......1
1.3...3.1
1..333..1
.1.....1.
..11111.."

] ;
draw lmt_potraced [value = "1", size = 1, polygon = true]

withcolor "darkred" ;
draw lmt_potraced [value = "3", size = 1, polygon = true]

withcolor "darkgreen" ;
draw lmt_potraced [value = "2", size = 0, polygon = true]

withcolor "darkblue" ;
lmt_stoppotraced ;

)
xysized (3cm,3cm)
withpen pencircle scaled 1mm ;

\stopMPcode

Gives:

We can do the same with data defined in Lua:

Potrace uncorrected draft 117

\startluacode
io.savedata("temp.txt",[[
..11111..
.1.....1.
1.......1
1.22.22.1
1.......1
1.3...3.1
1..333..1
.1.....1.
..11111..
]])
\stopluacode

With:

\startMPcode
draw image (

lmt_startpotraced [filename = "temp.txt"] ;
fill lmt_potraced [value = "1", size = 1]

withcolor "darkcyan" ;
fill lmt_potraced [value = "3", size = 1]

withcolor "darkmagenta" ;
fill lmt_potraced [value = "2", size = 0]

withcolor "darkyellow" ;
lmt_stoppotraced ;

) xysized (3cm,3cm) ;
\stopMPcode

Indeed we get:

22.4 Fonts
maybe

Extensions uncorrected draft 118

23 Extensions

23.1 Introduction
This is an uncorrected preliminary chapter.

The TEX and MetaPost macro languages each have their characteristics and as a result the Lua interfaces
in both these subsystems are different. There are however some similarities in fetching from, scanning,
and pushing back into these subsystems and by using wrappers the nasty details get hidden from users.
Wrapping also permits these interfaces to evolve to a stable state.

In due time much will be documented but currently a lot is also a bit experimental because that is the
way I can converge to what works best. You can assume that the solutions in the mlib-*.lmt files in
some form stay (unless it looks too weird). Just stick to the abstractions and you will be fine.

The functionality described here is available in LMTX. Although some prototypes can be found in MkIV
you should not expect the same behavior there.

23.2 The LUA interface (strings)

23.2.1 Strings
At some point the runscript primitive was added to mplib. Because officially the library is not bound
to Lua this neutral name was chosen. In LuaMetaTEX we have a follow up on that library and although it's
still neutral we just assume that Lua is used. The MetaFun follow up is therefore called LuaMetaFun, and
it used the new interfaces to implement efficient going back and forth between TEX, MetaPost and Lua.

The runscript macro is used like this:

\startMPcode
draw

textext("This will print \quotation{Hi} in the console!")
xsized TextWidth
withcolor "darkblue" ;

runscript("print('Hi')");
\stopMPcode

The runscript primitive triggers a callback that gets the string passed. This callback then does some
magic, normally compiling that string into byte code and execute it. The compiled function can return a
string that is then fed back into the MetaPost scantokens primitive command. So, that return value has
to be valid MetaPost!

\startMPcode
string s ;
s := runscript("mp.quoted('This will return a string!')") ;

Extensions uncorrected draft 119

draw textext(s)
xsized TextWidth
withcolor "darkgreen" ;

\stopMPcode

The mp.quoted call is one of the build into ConTEXt ways to pipe back something to MetaPost. We will
cover this later. If you don't want to use that feature, the call would have looked like this:

\startMPcode
string s ;
s := runscript("return " &

"'" & ditto &
"Ditto is a string that contains a double qoute!"
& ditto & "'"

) ;
draw textext(s)

xsized TextWidth
withcolor "darkred" ;

\stopMPcode

The ditto with ampersands trickery constructs a string with embedded quotes which is needed be
cause you want to pass back a string and MetaPost only considers something a string when it sees double
quotes.

23.2.2 Numerics
Instead of a string you can also pass a numeric:

\startMPcode
runscript 10000;
\stopMPcode

This time, on the console you will see something:

metapost > lua > 1: bad index: 10000
metapost > lua > 1: no result, invalid code: 10000

This I because at the Lua end this number should result in some action, in the case of ConTEXt calling a
registered function. Because the given number is unknown nothing is done. These messages come from
ConTEXt, and MetaPost will keep silent because we don't pass anything back.

This numeric interface only makes sense when the callback handles it and the way ConTEXt does that is
probably unique to that macro package. You can of course create MetaPost instances yourself (in Lua)
and handle callbacks your own way: you get a string, do this, you get a number, do that.

23.2.3 Helpers
In order to help users passing data to the Lua end there are some helper macros defined using the lua
macro with suffixes:

Extensions uncorrected draft 120

draw lua.mp.foo(0,2,(3,4)) ;
fill lua.MP.foo(0,2,(3,4)) ;

The lowercase mp namespace is for ConTEXt itself so if you use that for your own extensions, there is no
guarantee against future clashes. The uppercase MP namespace is for users. In any case you need to be
aware of expansion, so foo should not expand to something weird (variable names and vardef macro
names are okay).

At the Lua end these are mapped onto functions, like:

function mp.foo(n,m,p)
-- do something

end
function MP.foo(n,m,p)

-- do something
end

23.3 Printing back
In the previous chapter we saw mp.quotedbeing used to print back a string to MetaPost for processing by
scantokens. Not all function in the mpnamespace are meant for usage, so best stick to what is described
here.

The most generic print is mp.print that takes multiple arguments. A numeric value is flushed as seri
alized number and a string is passed along (so no quotes are added). A boolean becomes true or false.
A table with six elements is seen as a transform and otherwise passed as pair, color or cmyk color defi
nition. The print command takes multiple arguments and the results are concatenated into one string
with other prints so far.

Because this mechanism is already available in MkIV we remain compatible which means that the print
functions are available in the mp namespace but also in the mp.aux namespace. In the meantime we
moved to the print namespace. The main print command does a guess about what it is fed and will
inject that as string. Thereby the next are all valid:

fill fullcircle scaled runscript("mp.print ('3cm')") withcolor "darkred" ;
fill fullcircle scaled runscript("mp.print.print('2cm')") withcolor "darkgreen" ;
fill fullcircle scaled runscript("mp.aux.print ('1cm')") withcolor "darkblue" ;

string string passed as it is but with percent, double quote and newline
escaped

boolean boolean the true or false primitives
integer number an integer
number number a float
numeric number a float (same as previous)
points number a scaled numeric with pt unit
pair numbers or table a pair (x,y) or (x,x)
pairpoints numbers or table idem but with scaled numbers and a pt unit
triplet numbers or table a rgb triplet (r,g,b)
tripletpoints numbers or table idem but with scaled numbers and a pt unit
quadruple numbers or table a cmyk quadruple (c,m,y,k)

Extensions uncorrected draft 121

quadruplepoints numbers or table idem but with scaled numbers and a pt unit
color numbers or table a numeric, triplet or quadruple
transform numbers or table a six element transform
print whatever the normal semi-intelligent printer
fprint format, whatever the normal semi-intelligent printer using a format
vprint variable the normal semi-intelligent printer with escaped percents,

quotes and newlines
quoted string a valid string surrounded by quotes with an optional first

format specifier

A more complex printer is path that takes upto three arguments. The first argument is a table. Entries
have two or six elements where the last two are control points. The second argument indicates the con
nector: true and nil indicate .. while false will use --. When the last argument is true we have a
closed path. Alternatively the table can have a boolean cycle field. So these are all valid:

local t1 = { {0,0}, {1,0}, {1,1}, {0,1} }
local t2 = { {0,0}, {1,0}, {1,1}, {0,1}, cycle = true }

mp.print.path(t1)
mp.print.path(t1,nil,true)
mp.print.path(t1,true,true)
mp.print.path(t1,false)
mp.print.path(t1,false,true)
mp.print.path(ts,false)
mp.print.path(t1,"...",true)
mp.print.path(t1,"..",true)
mp.print.path(t2,"..")

As with the already mentioned simple printers there is a variant that scales: pathpoints (an alternative
is of course to scale the whole path by pt).

The result of what goes into the print functions is collected and flushed to MetaPost at the end of a call.
You can directly push something in the buffer with mp.direct and condense the (so far) buffered content
with mp.flush. Normally you will not need such low level handling.

23.4 Direct values
The print functions accumulate and flush at the end. Alternatively you can return a value. In that case
the type determines what gets done:

number native quantity
boolean native quantity (I need to check this!)
string feeds into scantokens
table feeds concatenated into scantokens

Instead of return you can also call an injector. The repertoire is similar to the printers: boolean,
cmykcolor, color, integer, number, numeric, pair, path, quadruplet, string, transform,
triplet and whatever (kind of automatic):

function MP.MyFunction()

Extensions uncorrected draft 122

mp.inject.string("This is just a string.")
end

The whd, xy and pt injectors inject triplets, pairs and numeric scaled from TEX scaled points to base
points.

23.5 Registering
Quite some of the build in functionality uses a slightly different approach. It roughly works as follows:

% reserve an index and set its value:

newscriptindex user_me_foo ; user_me_foo := scriptindex "user_me_foo" ;

% wrap the call into a macro:

def me_foo = runscript user_me_foo enddef ;

A macro can of course be more complex, for instance take arguments and push those into the script call:

def me_foo(expr a, b) = runscript user_me_foo a b enddef ;

But before this is done at the MetaPost end, you need to define the Lua function:

local function user_me_foo()
-- do something useful

end

metapost.registerscript("user_me_foo",user_me_foo)

In this case you use the print and inject functions, of course only when you want to push back some result.

Alternatively you can do:

metapost.registerdirect("user_me_foo",user_me_foo)
metapost.registertokens("user_me_foo",user_me_foo)

A direct script will treat return values as native, so string and tables are like quoted string and interpreted
objects (boolean, numeric, tables). The tokens variant will feed the strings and concatenated tables into
scantokens.

The script index can be fetched at the Lua end with:

local index = metapost.scriptindex(name)

23.6 Codes and such
Using the to be discussed scanners assumes that you know some of the internals (or at least concepts)
of MetaPost. Taco has written some excellent tutorials on the way MetaPost handles input. Here we just
mention what you can run into.

Extensions uncorrected draft 123

Each primitive, macro or variable falls into a category. The primitives are grouped in a way that permits
handling them as category and the following table shows the grouping. Internally the subcategories are
called modes. You should treat these numbers as abstractions because they can change over time, de
pending on how the library evolves. Modes can normally be ignored.

code mode name code category
65 1 #@ macrospecial
52 123 & ampersand
52 124 && ampersand
52 125 &&& ampersand
52 126 &&&& ampersand
59 110 * secondarybinary
46 108 + plusorminus
48 113 ++ tertiarybinary
48 114 +-+ tertiarybinary
79 0 , comma
46 109 - plusorminus
50 0 .. pathjoin
58 111 / slash
78 0 : colon
77 0 := assignment
80 0 ; semicolon
54 117 < primarybinary
54 118 <= primarybinary
54 122 <> primarybinary
55 121 = equals
54 119 > primarybinary
54 120 >= primarybinary
65 2 @ macrospecial
65 3 @# macrospecial
36 61 ASCII unary
67 0 [leftbracket

9 0 \ relax
68 0] rightbracket
59 112 ^ secondarybinary
21 0 addto addto
71 2 also thingstoadd
56 116 and and
36 94 angle unary
36 93 arclength unary
40 158 arcpoint ofbinary
40 159 arcpointlist ofbinary
40 157 arctime ofbinary
63 0 atleast atleast
26 1 batchmode mode
34 0 begingroup begingroup
36 17 blackpart unary
36 13 bluepart unary
32 21 boolean typename

Extensions uncorrected draft 124

36 107 bounded unary
40 163 boundingpath ofbinary

1 0 btex btex
36 84 centerof unary
36 85 centerofmass unary
36 62 char unary
43 21 charcode internal
43 24 chardp internal
43 23 charht internal
43 25 charic internal
43 22 charwd internal
22 38 clip setbounds
36 105 clipped unary
36 46 closefrom unary
32 29 cmykcolor typename
32 28 color typename
36 66 colormodel unary
71 1 contour thingstoadd
61 0 controls controls
36 57 convexed unary
36 86 corners unary
36 77 cosd unary
64 0 curl curl
36 14 cyanpart unary
39 95 cycle cycle
70 1 dashed with
36 69 dashpart unary
19 1 def macrodef
30 0 delimiters delimiters
36 92 deltadirection unary
36 89 deltapoint unary
36 91 deltapostcontrol unary
36 90 deltaprecontrol unary
40 145 direction ofbinary
40 141 directiontime ofbinary
71 0 doublepath thingstoadd

4 3 else fiorelse
4 4 elseif fiorelse

19 0 enddef macrodef
6 0 endfor iteration

81 0 endgroup endgroup
5 1 endinput input

40 162 envelope ofbinary
28 2 errhelp message
28 1 errmessage message
26 4 errorstopmode mode

2 0 etex etex
29 0 everyjob everyjob

Extensions uncorrected draft 125

8 0 exitif exittest
13 0 expandafter expandafter
60 8 expr parametertype
35 39 false nullary

4 2 fi fiorelse
36 103 filled unary
61 1 firstcontrol controls
36 78 floor unary

6 2 for iteration
6 1 forever iteration
6 3 forsuffixes iteration

36 12 greenpart unary
36 18 greypart unary
36 106 grouped unary
36 60 hex unary

3 1 if if
57 0 infont primarydef
23 0 inner protection

5 0 input input
16 0 interim interim
43 39 intersectionprecision internal
48 136 intersectiontimes tertiarybinary
48 137 intersectiontimeslist tertiarybinary
43 3 jobname internal
43 40 jointolerance internal
36 48 known unary
36 63 length unary
43 38 lessdigits internal
17 0 let let
43 31 linecap internal
43 30 linejoin internal
36 80 llcorner unary
36 81 lrcorner unary
36 15 magentapart unary
36 56 makenep unary
36 54 makepath unary
36 55 makepen unary
12 0 maketext maketext
27 1 maxknotpool onlyset
36 74 mexp unary
43 33 miterlimit internal
36 75 mlog unary
35 161 mpversion nullary
32 24 nep typename
18 0 newinternal newinternal
39 96 nocycle cycle
36 64 nolength unary
26 2 nonstopmode mode

Extensions uncorrected draft 126

35 44 normaldeviate nullary
36 50 not unary
35 41 nullpen nullary
35 40 nullpicture nullary
43 2 numberprecision internal
43 1 numbersystem internal
32 31 numeric typename
36 59 oct unary
36 47 odd unary
72 0 of of
48 115 or tertiarybinary
23 1 outer protection
43 29 overloadmode internal
32 30 pair typename
32 25 path typename
35 149 pathdirection nullary
35 154 pathfirst nullary
35 151 pathindex nullary
35 155 pathlast nullary
35 152 pathlastindex nullary
35 153 pathlength nullary
36 67 pathpart unary
35 146 pathpoint nullary
35 148 pathpostcontrol nullary
35 147 pathprecontrol nullary
35 150 pathstate nullary
43 26 pausing internal
32 23 pen typename
35 43 pencircle nullary
40 156 penoffset ofbinary
36 68 penpart unary
32 26 picture typename
40 142 point ofbinary
40 144 postcontrol ofbinary
36 71 postscriptpart unary
40 143 precontrol ofbinary
36 70 prescriptpart unary
60 1 primary parametertype
19 3 primarydef macrodef
27 0 randomseed onlyset
36 45 readfrom unary
35 42 readstring nullary
36 11 redpart unary
43 37 restoreclipcolor internal
36 52 reverse unary
32 28 rgbcolor typename
59 127 rotated secondarybinary
11 0 runscript runscript

Extensions uncorrected draft 127

15 0 save save
59 129 scaled secondarybinary
10 0 scantokens scantokens
26 3 scrollmode mode
60 2 secondary parametertype
19 4 secondarydef macrodef
61 2 secondcontrol controls
22 40 setbounds setbounds
22 39 setgroup setbounds
24 1 setproperty property
59 130 shifted secondarybinary
20 0 shipout shipout
25 2 show show
25 4 showdependencies show
25 1 showstats show
43 27 showstopping internal
25 0 showtoken show
25 3 showvariable show
26 5 silentmode mode
36 76 sind unary
59 128 slanted secondarybinary
36 73 sqrt unary
43 32 stacking internal
36 72 stackingpart unary
74 0 step step
37 0 str str
32 22 string typename
36 104 stroked unary
40 160 subarclength ofbinary
40 140 subpath ofbinary
40 139 substring ofbinary
60 9 suffix parametertype
62 0 tension tension
60 3 tertiary parametertype
19 5 tertiarydef macrodef
43 28 texscriptmode internal
60 10 text parametertype
43 18 time internal
73 0 to to
43 6 tracingcapsules internal
43 7 tracingchoices internal
43 9 tracingcommands internal
43 5 tracingequations internal
43 11 tracingmacros internal
43 14 tracingonline internal
43 12 tracingoutput internal
43 10 tracingrestores internal
43 8 tracingspecs internal

Extensions uncorrected draft 128

43 13 tracingstats internal
43 4 tracingtitles internal
32 27 transform typename
59 131 transformed secondarybinary
35 38 true nullary
43 35 truecorners internal
36 65 turningnumber unary
36 82 ulcorner unary
36 58 uncontrolled unary
36 53 uncycle unary
36 79 uniformdeviate unary
36 49 unknown unary
75 0 until until
36 83 urcorner unary
19 2 vardef macrodef

1 1 verbatimtex btex
38 0 void void
43 34 warningcheck internal
70 11 withcmykcolor with
70 15 withcurvature with
70 8 withgreyscale with
76 0 within within
70 12 withlinecap with
70 13 withlinejoin with
70 14 withmiterlimit with
70 5 withnestedpostscript with
70 4 withnestedprescript with
70 16 withnothing with
70 7 withoutcolor with
70 0 withpen with
70 3 withpostscript with
70 2 withprescript with
70 10 withrgbcolor with
70 6 withstacking with
31 0 write write
39 100 xabsolute cycle
36 5 xpart unary
36 87 xrange unary
39 97 xrelative cycle
59 133 xscaled secondarybinary
36 7 xxpart unary
39 102 xyabsolute cycle
36 8 xypart unary
39 99 xyrelative cycle
39 101 yabsolute cycle
36 16 yellowpart unary
36 6 ypart unary
36 88 yrange unary

Extensions uncorrected draft 129

39 98 yrelative cycle
59 134 yscaled secondarybinary
36 9 yxpart unary
36 10 yypart unary
59 135 zscaled secondarybinary
49 0 { leftbrace
69 0 } rightbrace

Variables are of a certain type. Possible variable types are available in metapost.types via numeric
and verbose keys: 0: undefined, 1: vacuous, 2: boolean, 3: unknownboolean, 4: string, 5: unknown
string, 6: pen, 7: unknownpen, 8: nep, 9: unknownnep, 10: path, 11: unknownpath, 12: picture, 13:
unknownpicture, 14: transform, 15: color, 16: cmykcolor, 17: pair, 18: numeric, 19: known, 20: de
pendent, 21: protodependent, 22: independent, 23: tokenlist, 24: structured, 25: unsuffixedmacro, 26:
suffixedmacro.

The possible command codes (as seen in the primitive table) are available in metapost.codes via nu
meric and verbose keys: 0: undefined, 1: btex, 2: etex, 3: if, 4: fiorelse, 5: input, 6: iteration, 7: re
peatloop, 8: exittest, 9: relax, 10: scantokens, 11: runscript, 12: maketext, 13: expandafter, 14: de
finedmacro, 15: save, 16: interim, 17: let, 18: newinternal, 19: macrodef, 20: shipout, 21: addto, 22:
setbounds, 23: protection, 24: property, 25: show, 26: mode, 27: onlyset, 28: message, 29: everyjob, 30:
delimiters, 31: write, 32: typename, 33: leftdelimiter, 34: begingroup, 35: nullary, 36: unary, 37: str, 38:
void, 39: cycle, 40: ofbinary, 41: capsule, 42: string, 43: internal, 44: tag, 45: numeric, 46: plusormi
nus, 47: secondarydef, 48: tertiarybinary, 49: leftbrace, 50: pathjoin, 51: pathconnect, 52: ampersand,
53: tertiarydef, 54: primarybinary, 55: equals, 56: and, 57: primarydef, 58: slash, 59: secondarybinary,
60: parametertype, 61: controls, 62: tension, 63: atleast, 64: curl, 65: macrospecial, 66: rightdelimiter,
67: leftbracket, 68: rightbracket, 69: rightbrace, 70: with, 71: thingstoadd, 72: of, 73: to, 74: step, 75:
until, 76: within, 77: assignment, 78: colon, 79: comma, 80: semicolon, 81: endgroup, 82: stop, 83: un
definedcs.

When you scan for input not all of these make sense, often you will stick to dealing with symbols like
brackets, braces, equal signs and variables or expressions.

23.7 Scanners
The most low level scanners are token and symbol. Although we have them in the mp.scan namespace
they are just library calls. You use them like:

if scan.symbol(true) == "[" then -- "]"
scan.symbol()

else
...

end

Here we check if the upcoming token is a specific symbol. The true will push back the token. A second
boolean argument will enforce expansion.

Scanning can be hairy because the engine is set up in a way that mix lookahead, expand, resolve and
processing. So, you can run into a numeric constant, but also in a not yet resolved quantity (take = versus
:=). When writing more complex scanners it helps to print codes and types.

Extensions uncorrected draft 130

The scan.token function returns a command, mode and expression type but in practice you only have to
consider the first value. Other scanners are boolean, cmykcolor, color, expression, integer, next,
number, numeric, pair, path, pen, property, string, transform, plus some implemented around
these. Keep in mind that scanners are bound to an instance so the functions in the scan namespace are
actually wrappers around the library calls.

Because some tokens trigger further scanning (e.g. expressions) we also have two dedicated sub tables
with scanners: tokenscanners and typescanners where, when indexed with a token (command) or
type you get the appropriate scanner to get a real result. When you look at what is built into ConTEXt you
will notice that we often look ahead and then trigger the appropriate scanner. This approach permits to
come up with syntaxes that are different than what MetaPost normally does, so for instance brackets and
braces can be used to fence parameters and collections, while lists of comma separated numbers can be
grabbed that are not part of pairs, triplets, quadruples etc.

23.8 Special helpers

23.8.1 Hashes
This is typically one of the examples that popped up when Alan Braslau and I were exploring the new
possibilities. Due to the way MetaPost implements hashes using Lua might turn out to be more efficient.
Here are some examples:

\startMPcode
% newhash("foo") ;

tohash("foo","bar","gnu") ;
tohash("foo","rab","ung") ;
fill fullcircle scaled 1cm withcolor "lightgray" ;
draw textext(fromhash("foo","bar")) ;
draw textext(fromhash("foo","rab")) rotated 90 ;
disposehash("foo") ;

\stopMPcode

In this example we allocate a hash and afterwards get rid of it. When you don't allocate one it will be
automatically allocated. Hashes are persistent, so if you want to be sure you start fresh you'd better
create one explicitly. And if you use a large one, you'd better clean up afterwards.4

\startMPcode
resethash("foo")
tohash("foo",1,"gnu") ;
tohash("foo",2,"ung") ;
fill fullcircle scaled 1cm withcolor "lightgray" ;
for i=1 upto 3 :

if inhash("foo",i) :
draw textext(fromhash("foo",i))

4 In MkXL the newhash macro is no longer needed to get a unique index.

Extensions uncorrected draft 131

rotated ((i-1) * 90) ;
fi ;

endfor ;
\stopMPcode

Here we check if something is present in a hash. This example also demonstrates that we can use num
bers as key. And yes, you can also use boolean keys:

\startMPcode
resethash("foo")
tohash("foo",false,"gnu") ;
tohash("foo",true,"ung") ;
fill fullcircle scaled 1cm withcolor "lightgray" ;
draw textext(fromhash("foo",false)) ;
draw textext(fromhash("foo",true)) rotated 90 ;

\stopMPcode

Looking at the implementation of these macros (at the MetaPost end) and functions (at the Lua end) will
give you an idea how all these interfaces work together.

23.8.2 Modes
You can query the modes set at the TEX end. You can also check the systemmode.

\enablemode[weird]
\startMPcode

fill fullsquare xyscaled (TextWidth,5mm)
withcolor if texmode("weird") : "darkblue" else : "darkgreen" fi ;

\stopMPcode
\disablemode[weird]
\startMPcode

fill fullsquare xyscaled (TextWidth,5mm)
withcolor if texmode("weird") : "darkblue" else : "darkgreen" fi ;

\stopMPcode

23.8.3 Positions
Keeping track of positions is a core feature and accessible in MetaPosttoo. Here is a somewhat weird ex
ample. Positions are always relative to a region, normally the page, but here we provide one via \framed.

\framed [region=MyRegion,offset=overlay] \bgroup \hpos {here} \bgroup
\startMPcode

fill fullcircle scaled 10mm
withcolor "darkblue" ;

Extensions uncorrected draft 132

draw positionxy("here")
shifted - positionxy("MyRegion")
withpen pencircle scaled 2mm
withcolor "darkred" ;

draw positionxy("here")
shifted - positionxy("MyRegion")
shifted (wdpart positionwhd("MyRegion"),0)
withpen pencircle scaled 5mm
withcolor "darkgreen" ;

\stopMPcode
\egroup \egroup

positionanchor string
positionbox path using connector --
positioncolumn numeric
positioncurve path using connector ..
positiondepth numeric
positionhangafter numeric
positionhangindent numeric
positionheight numeric
positionhsize numeric
positionleftskip numeric
positionllx numeric
positionlly numeric
positionlowerleft pair
positionlowerright pair
positionpage numeric
positionparagraph numeric
positionparindent numeric
positionpath path using connector --
positionpx numeric
positionpxy pair
positionpy numeric
positionregion string
positionrightskip numeric
positionupperleft pair
positionupperright pair
positionurx numeric
positionury numeric
positionwhd (wd,ht,dp)
positionwidth numeric

Positioning can be tricky. You really need to make sure that the bounding box of the result is right because
when it changes, positions also change you get cyclic runs and quite possible graphics that get larger and
larger.

Extensions uncorrected draft 133

23.8.4 TEX quantities
You can set and get some of TEX's internal quantities:

\scratchdimen=100pt \scratchcounter=250 \scratchtoks={okay} \def\Good{good}
\startMPcode
draw textext(getdimen("scratchdimen")) shifted (0cm,0) withcolor "darkblue" ;
draw textext(getcount("scratchcounter")) shifted (3cm,0) withcolor "darkred" ;
draw textext(gettoks ("scratchtoks")) shifted (6cm,0) withcolor "darkgreen" ;
draw textext(getmacro("Good")) shifted (9cm,0) withcolor "darkyellow"
;

\stopMPcode

Valid getters are getmacro, getdimen, getcount and gettoks and their counterparts are set... and
setglobal.... Instead of names you can use numbers for registers, but don't mess up the system ones:

\startMPcode
setdimen(2,2*100pt) setcount(2,2*250) settoks(2,"OKAY") setmacro("Good","GOOD")
draw textext(getdimen(2)) shifted (0cm,0) withcolor "darkblue" ;
draw textext(getcount(2)) shifted (3cm,0) withcolor "darkred" ;
draw textext(gettoks (2)) shifted (6cm,0) withcolor "darkgreen" ;
draw textext(getmacro("Good")) shifted (9cm,0) withcolor "darkyellow" ;
\stopMPcode

23.8.5 UTF8
Because we use an utf8 engine we also have MetaPost accepting that encoding. The normal string prim
itives are unchanged and operate on (ascii) bytes but we have some additional helpers (and more might
show up if needed). Here is an example:

\startMPcode
string s ; s := "ÀÁÂÃÄÅàáâãäå" ;
draw textext(s) shifted (0cm,0) withcolor "darkyellow" ;
draw textext(utfnum("Â")) shifted (3cm,0) withcolor "darkmagenta" ;
draw textext(utflen(s)) shifted (6cm,0) withcolor "darkcyan" ;
draw textext(utfsub(s,3,4)) shifted (9cm,0) withcolor "darkblue" ;
draw textext(utfsub(s,6)) shifted (12cm,0) withcolor "darkred" ;
\stopMPcode

23.8.6 Checkers
There are a couple of checkers, mostly used in modules. Here's are a few that Alan needs for the node
module:

\startMPcode

Extensions uncorrected draft 134

draw image (
draw textext(if isarray p[1][2] : "Y__" else : "N__" fi) ;
draw textext(if isarray p[1] : "_Y_" else : "_N_" fi) ;
draw textext(if isarray p : "__Y" else : "__N" fi) ;

) xsized 3cm withcolor "darkred" ;
\stopMPcode

\startMPcode
draw image (

draw textext(prefix p[1][2]) shifted (10,0) withcolor "darkred" ;
draw textext(prefix p[1]) shifted (20,0) withcolor "darkgreen" ;
draw textext(prefix p) shifted (30,0) withcolor "darkblue" ;

) ysized 12mm ;
\stopMPcode

\startMPcode
draw image (

draw textext(dimension p[1][2]) shifted (10,0) withcolor "darkred" ;
draw textext(dimension p[1]) shifted (20,0) withcolor "darkgreen" ;
draw textext(dimension p) shifted (30,0) withcolor "darkblue" ;

) ysized 12mm ;
\stopMPcode

\startMPcode
picture p ; p := textext("some text") ;
path q ; q := fullcircle scaled 3cm ;
draw textext(tostring(isobject(p))) withcolor "darkgreen" ;
draw textext(tostring(isobject(q))) shifted (50,0) withcolor "darkblue" ;

\stopMPcode

23.8.7 Key-value interfaces
There are plenty of examples in the mp-lmtx.mpxl file and more will be added. Just make sure you create your
own unique namespace and don't use the ones that ConTEXt uses (like lmt_).

Interface uncorrected draft 135

24 Interface

24.1 Macros
Because graphic solutions are always kind of personal or domain driven it makes not much sense to
cook up very generic solutions. If you have a project where MetaPost can be of help, it also makes sense
to spend some time on implementing the basics that you need. In that case you can just copy and tweak
what is there. The easiest way to do that is to make a test file and use:

\startMPpage
% your code

\stopMPpage

Often you don't need to write macros, and standard drawing commands will do the job, but when you find
yourself repeating code, a wapper might make sense. And this is why we have this key/value interface: it's
easier to abstract your settings than to pass them as (expression or text) arguments to a macro, especially
when there are many.

You can find many examples of the key/value driven user interface in the source files and these are ac
tually not that hard to understand when you know a bit of MetaPost and the additional macros that come
with MetaFun. In case you wonder about overhead: the performance of this mechanism is pretty good.

Although the parameter handler runs on top of the Lua interface, you don't need to use Lua unless you
find that MetaPost can't do the job. I won't give examples of coding because I think that the source of
MetaFun provides enough clues, especially the file mp-lmtx.mpxl. As the name suggests this is part
of the ConTEXt version LMTX, which runs on top of LuaMetaTEX. I leave it open if I will backport this
functionality to LuaTEX and therefore MkIV.

An excellent explanation of this interface can be found at:

https://adityam.github.io/context-blog/post/new-metafun-interface/

So (at least for now) here I can stick to just mentioning the currently stable interface macros:

presetparameters name [...] Assign default values to a category of parame
ters. Sometimes it makes sense not to set a de
fault, because then you can check if a parame
ter has been set at all.

applyparameters name macro This prepares the parameter handler for the
given category and calls the given macro when
that is done.

getparameters name [...] The parameters given after the category name
are set.

hasparameter names Returns true when a parameter is set, and
false otherwise.

hasoption names options Returns true when there is overlap in given
options, and false otherwise.

Interface uncorrected draft 136

getparameter names Resolves the parameter with the given name.
because a parameter itself can have a parame
ter list you can pass additional names to reach
the final destination.

getparameterdefault names Resolves the parameter with the given name.
because a parameter itself can have a parame
ter list you can pass additional names to reach
the final destination. The last value is used
when no parameter is found.

getparametercount names Returns the size if a list (array).
getmaxparametercount names Returns the size if a list (array) but descends

into lists to find the largest size of a sublist.

getparameterpath names string boolean Returns the parameter as path. The optional
string is one of --, .. or ... and the also op
tional boolean will force a closed path.

getparameterpen names Returns the parameter as pen (path).
getparametertext names boolean Returns the parameter as string. The boolean

can be used to force prepending a so called
\strut.

pushparameters category Pushed the given (sub) category onto the stack
so that we don't need to give the category each
time.

popparameters Pops the current (sub) category from the stack.

Most commands accept a list of strings separated by one or more spaces, The resolved will then stepwise
descend into the parameter tree. This means that a parameter itself can refer to a list. When a value is
an array and the last name is a number, the value at the given index will be returned.

"category" "name" ... "name"
"category" "name" ... number

The category is not used when we have pushed a (sub) category which can save you some typing and
also is more efficient. Of course than can mean that you need to store values at a higher level when you
need them at a deeper level.

There are quite some extra helpers that relate to this mechanism, at the MetaPost end as well as at the
Lua end. They aim for instance at efficiently dealing with paths and can be seen at work in the mentioned
module.

There is one thing you should notice. While MetaPost has numeric, string, boolean and path variables
that can be conveniently be passed to and from Lua, communicating colors is a bit of a hassle. This is
because rgb and cmyk colors and gray scales use different types. For this reason it is strongly recom
mended to use strings that refer to predefined colors instead. This also enforces consistency with the
TEX end. As convenience you can define colors at the MetaFun end.

\startMPcode
definecolor [name = "MyColor", r = .5, g = .25, b = .25]

fill fullsquare xyscaled (TextWidth,5mm) withcolor "MyColor" ;

Interface uncorrected draft 137

\stopMPcode

24.2 Units
Many dimensions used at the TEX end are also available in MetaFun. Examples are TextWidth, EmHeight
and StrutHeight. In MkIV they are numeric variables that get set every graphic but in MkXL these
are not numeric variables but (hidden) Lua calls so they can't be set at the MetaPost end; but they are
injected as numeric quantities so you can efficiently them in calculations.

In MetaPost examples you often find u being used as unit, like:

u := 1cm ; draw (u,0) -- (u,u) -- (3u,0);

However, what if you want to set such a unit at the TEX end? For this purpose we have a dedicated variable,
which is demonstrated in the following examples. First we set a variable:

\uunit=1cm

\startMPcode
definecolor [name = "MyColor", r = .5, g = .25, b = .25]

fill fullsquare xyscaled (TextWidth,5mm) withcolor "MyColor" ;
\stopMPcode

and next we apply it:

\framed[offset=.2uu,strut=no]
\bgroup

\startMPcode
fill fullcircle scaled (2uu) withcolor "darkblue" ;
fill fullcircle scaled (8mm) withcolor "middlegray" ;

\stopMPcode
\egroup

The \uunit dimension register is hooked into TEX's unit parser as type uu (user unit). At the MetaPost
end uu is effectively a Lua call that fetches the of the dimension from the TEXend and presents it a a
numeric.

When we set

\uunit=5mm

The same code gives::

\framed[offset=.1uu,strut=no]
\bgroup

\startMPcode

Interface uncorrected draft 138

save uu ; numeric uu ; uu := 5mm ;
fill fullcircle scaled (3uu) withcolor "darkred" ;
fill fullcircle scaled (2uu) withcolor "middlegray" ;

\stopMPcode
\egroup

This demonstrates that we can overload uu but make sure to save it first so that later it is available again.

24.3 Paths from LUA
Passing paths to MetaPost using specific properties is sort of tricky because once the points are set, the
solver will be applied. This translates curls, tensions and/or explicit control points into the final control
points.

In the next example we show a few interfaces. Not all of that might be perfect yes but in most cases it
works out.

\startluacode
local shapes = { }
shapes[1] = { {0,0}, {-1,-1}, {-1, 0}, {0,0}, "cycle" }
shapes[2] = { {0,1}, { 1, 0}, { 1,-1}, {0,1}, "cycle" }
shapes[3] = { {0,2}, { 2, 0}, { 2, 1}, {0,2}, "cycle" }
shapes[4] = {

{0,0}, {-1,-1}, {-1, 0}, {0,0}, "cycle", "append",
{0,1}, { 1, 0}, { 1,-1}, {0,1}, "cycle", "append",
{0,2}, { 2, 0}, { 2, 1}, {0,2}, "cycle", "append",

}
shapes[5] = {

{ path = shapes[1], append = true },
{ path = shapes[2], append = true },
{ path = shapes[3], append = true },

}
function mp.getshapepath(n)

mp.inject.path(shapes[n])
end

\stopluacode

\startMPcode
path p ;
p := lua.mp.getshapepath(1) scaled 1cm ;
draw p withpen pencircle scaled 2pt withcolor red ;
p := lua.mp.getshapepath(2) scaled 1cm ;
draw p withpen pencircle scaled 2pt withcolor blue ;
p := lua.mp.getshapepath(3) scaled 1cm ;
draw p withpen pencircle scaled 2pt withcolor green ;
p := lua.mp.getshapepath(4) scaled 1cm &&cycle ;
fill p withcolor 0.9 ;
draw p withpen pencircle scaled 1pt withcolor 0.7 ;

Interface uncorrected draft 139

p := lua.mp.getshapepath(5) scaled 1cm ;
draw p withpen pencircle scaled .25pt withcolor 0.2 ;

\stopMPcode

Especially cycling and appending needs to be done precisely in order not to get redundant (or bad) points.

This combines the first three paths similar to the fourth and fifths. If you doubt what you get you can
always show the path and look for {begin} and {end} indicators.

\startMPcode
path p ;
p := lua.mp.getshapepath(1) scaled 1cm &&

lua.mp.getshapepath(2) scaled 1cm &&
lua.mp.getshapepath(3) scaled 1cm ;

draw p withpen pencircle scaled 1pt withcolor 0.7 ;
% show(p);

\stopMPcode

We draw the result and see that they are decoupled indeed thanks to some && magic:

