
\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

conditionals

1

Preamble

Contents

1 Preamble 1

2 TEX primitives 6

3 𝜀-TEX primitives 13

4 LuaTEX primitives 17

5 LuaMetaTEX primitives 21

6 For the brave 33

7 Relaxing 35

1 Preamble

1.1 Introduction

You seldom need the low level conditionals because there are quite some so called

support macros available in ConTEXt. For instance, when you want to compare two

values (or more accurate: sequences of tokens), you can do this:

\doifelse {foo} {bar} {

the same

} {

different

}

But if you look in the ConTEXt code, you will see that often we use primitives that start

with \if in low level macros. There are good reasons for this. First of all, it looks

familiar when you also code in other languages. Another reason is performance but

that is only true in cases where the snippet of code is expanded very often, because

TEX is already pretty fast. Using low level TEX can also be more verbose, which is not

always nice in a document source. But, the most important reason (for me) is the layout

of the code. I often let the look and feel of code determine the kind of coding. This also

relates to the syntax highlighting that I am using, which is consistent for TEX, MetaPost,

Lua, etc. and evolved over decades. If code looks bad, it probably is bad. Of course this

doesn't mean all my code looks good; you're warned. In general we can say that I often

use \if... when coding core macros, and \doifelse... macros in (document) styles

and modules.

In the sections below I will discuss the low level conditions in TEX. For the often more

convenient ConTEXt wrappers you can consult the source of the system and support

modules, the wiki and/or manuals.

2

Preamble

Some of the primitives shown here are only available in LuaTEX, and some only in Lua-

MetaTEX. We could do without them for decades but they were added to these engines

because of convenience and, more important, because then made for nicer code. Of

course there's also the fun aspect. This manual is not an invitation to use these very

low level primitives in your document source. The ones that probably make most sense

are \ifnum, \ifdim and \ifcase. The others are often wrapped into support macros

that are more convenient.

1.2 Number and dimensions

Numbers and dimensions are basic data types in TEX. When you enter one, a number is

just that but a dimension gets a unit. Compare:

1234

1234pt

If you also use MetaPost, you need to be aware of the fact that in that language there

are not really dimensions. The post part of the name implies that eventually a number

becomes a PostScript unit which represents a base point (bp) in TEX. When in MetaPost

you entry 1234pt you actually multiply 1234 by the variable pt. In TEX on the other

hand, a unit like pt is one of the keywords that gets parsed. Internally dimensions are

also numbers and the unit (keyword) tells the scanner what multiplier to use. When

that multiplier is one, we're talking of scaled points, with the unit sp.

\the\dimexpr 12.34pt \relax

\the\dimexpr 12.34sp \relax

\the\dimexpr 12.99sp \relax

\the\dimexpr 1234sp \relax

\the\numexpr 1234 \relax

12.34pt

0.00018pt

0.00018pt

0.01883pt

1234

When we serialize a dimension it always shows the dimension in points, unless we se

rialize it as number.

\scratchdimen1234sp

\number\scratchdimen

\the\scratchdimen

3

Preamble

1234

0.01883pt

When a number is scanned, the first thing that is taken care of is the sign. In many

cases, when TEX scans for something specific it will ignore spaces. It will happily accept

multiple signs:

\number +123

\number +++123

\number + + + 123

\number +-+-+123

\number --123

\number ---123

123

123

123

123

123

-123

Watch how the negation accumulates. The scanner can handle decimal, hexadecimal

and octal numbers:

\number -123

\number -"123

\number -'123

-123

-291

-83

A dimension is scanned like a number but this time the scanner checks for upto three

parts: an either or not signed number, a period and a fraction. Here no number means

zero, so the next is valid:

\the\dimexpr . pt \relax

\the\dimexpr 1. pt \relax

\the\dimexpr .1pt \relax

\the\dimexpr 1.1pt \relax

0.0pt

1.0pt

4

Preamble

0.1pt

1.1pt

Again we can use hexadecimal and octal numbers but when these are entered, there

can be no fractional part.

\the\dimexpr 16 pt \relax

\the\dimexpr "10 pt \relax

\the\dimexpr '20 pt \relax

16.0pt

16.0pt

16.0pt

The reason for discussing numbers and dimensions here is that there are cases where

when TEX expects a number it will also accept a dimension. It is good to know that for

instance a macro defined with \chardef or \mathchardef also is treated as a number.

Even normal characters can be numbers, when prefixed by a ` (backtick).

The maximum number in TEX is 2147483647 so we can do this:

\scratchcounter2147483647

but not this

\scratchcounter2147483648

as it will trigger an error. A dimension can be positive and negative so there we can do

at most:

\scratchdimen 1073741823sp

\scratchdimen1073741823sp

\number\scratchdimen

\the\scratchdimen

\scratchdimen16383.99998pt

\number\scratchdimen

\the\scratchdimen

1073741823

16383.99998pt

1073741823

16383.99998pt

5

Preamble

We can also do this:

\scratchdimen16383.99999pt

\number\scratchdimen

\the\scratchdimen

1073741823

16383.99998pt

but the next one will fail:

\scratchdimen16383.9999999pt

Just keep in mind that TEX scans both parts as number so the error comes from checking

if those numbers combine well.

\ifdim 16383.99999 pt = 16383.99998 pt the same \else different \fi

\ifdim 16383.999979 pt = 16383.999980 pt the same \else different \fi

\ifdim 16383.999987 pt = 16383.999991 pt the same \else different \fi

Watch the difference in dividing, the / rounds, while the : truncates.

the same

the same

the same

You need to be aware of border cases, although in practice they never really are a

problem:

\ifdim \dimexpr16383.99997 pt/2\relax = \dimexpr 16383.99998 pt/2\relax

the same \else different

\fi

\ifdim \dimexpr16383.99997 pt:2\relax = \dimexpr 16383.99998 pt:2\relax

the same \else different

\fi

different

the same

\ifdim \dimexpr1.99997 pt/2\relax = \dimexpr 1.99998 pt/2\relax

the same \else different

\fi

\ifdim \dimexpr1.99997 pt:2\relax = \dimexpr 1.99998 pt:2\relax

the same \else different

6

TEX primitives

\fi

different

the same

\ifdim \dimexpr1.999999 pt/2\relax = \dimexpr 1.9999995 pt/2\relax

the same \else different

\fi

\ifdim \dimexpr1.999999 pt:2\relax = \dimexpr 1.9999995 pt:2\relax

the same \else different

\fi

the same

the same

This last case demonstrates that at some point the digits get dropped (still assuming

that the fraction is within the maximum permitted) so these numbers then are the same.

Anyway, this is not different in other programming languages and just something you

need to be aware of.

2 TEX primitives

2.1 \if

I seldom use this one. Internally TEX stores (and thinks) in terms of tokens. If you see

for instance \def or \dimen or \hbox these all become tokens. But characters like A or

@ also become tokens. In this test primitive all non-characters are considered to be the

same. In the next examples this is demonstrated.

[\if AB yes\else nop\fi]

[\if AA yes\else nop\fi]

[\if CDyes\else nop\fi]

[\if CCyes\else nop\fi]

[\if\dimen\font yes\else nop\fi]

[\if\dimen\font yes\else nop\fi]

Watch how spaces after the two characters are kept: [nop] [yes] [nop] [yes] [yes] [yes].

This primitive looks at the next two tokens but when doing so it expands. Just look at

the following:

\def\AA{AA}%

7

TEX primitives

\def\AB{AB}%

[\if\AA yes\else nop\fi]

[\if\AB yes\else nop\fi]

We get: [yes] [nop].

2.2 \ifcat

In TEX characters (in the input) get interpreted according to their so called catcodes.

The most common are letters (alphabetic) and and other (symbols) but for instance the

backslash has the property that it starts a command, the dollar signs trigger math mode,

while the curly braced deal with grouping. If for instance either or not the ampersand

is special (for instance as column separator in tables) depends on the macro package.

[\ifcat AB yes\else nop\fi]

[\ifcat AA yes\else nop\fi]

[\ifcat CDyes\else nop\fi]

[\ifcat CCyes\else nop\fi]

[\ifcat C1yes\else nop\fi]

[\ifcat\dimen\font yes\else nop\fi]

[\ifcat\dimen\font yes\else nop\fi]

This time we also compare a letter with a number: [yes] [yes] [yes] [yes] [nop] [yes]

[yes]. In that case the category codes differ (letter vs other) but in this test comparing

the letters result in a match. This is a test that is used only once in ConTEXt and even

that occasion is dubious and will go away.

You can use \noexpand to prevent expansion:

\def\A{A}%

\let\B B%

\def\C{D}%

\let\D D%

[\ifcat\noexpand\A Ayes\else nop\fi]

[\ifcat\noexpand\B Byes\else nop\fi]

[\ifcat\noexpand\C Cyes\else nop\fi]

[\ifcat\noexpand\C Dyes\else nop\fi]

[\ifcat\noexpand\D Dyes\else nop\fi]

We get: [nop] [yes] [nop] [nop] [yes], so who still thinks that TEX is easy to understand

for a novice user?

8

TEX primitives

2.3 \ifnum

This condition compares its argument with another one, separated by an <, = or > char

acter.

\ifnum\scratchcounter<0

less than

\else\ifnum\scratchcounter>0

more than

\else

equal to

\fi zero

This is one of these situations where a dimension can be used instead. In that case the

dimension is in scaled points.

\ifnum\scratchdimen<0

less than

\else\ifnum\scratchdimen>0

more than

\else

equal to

\fi zero

Of course this equal treatment of a dimension and number is only true when the dimen

sion is a register or box property.

2.4 \ifdim

This condition compares one dimension with another one, separated by an <, = or >

sign.

\ifdim\scratchdimen<0pt

less than

\else\ifdim\scratchdimen>0pt

more than

\else

equal to

\fi zero

While when comparing numbers a dimension is a valid quantity but here you cannot

mix them: something with a unit is expected.

9

TEX primitives

2.5 \ifodd

This one can come in handy, although in ConTEXt it is only used in checking for an odd

of even page number.

\scratchdimen 3sp

\scratchcounter4

\ifodd\scratchdimen very \else not so \fi odd

\ifodd\scratchcounter very \else not so \fi odd

As with the previously discussed \ifnum you can use a dimension variable too, which is

then interpreted as representing scaled points. Here we get:

very odd

not so odd

2.6 \ifvmode

This is a rather trivial check. It takes no arguments and just is true when we're in

vertical mode. Here is an example:

\hbox{\ifvmode\else\par\fi\ifvmode v\else h\fi mode}

We're always in horizontal mode and issuing a \par inside a horizontal box doesn't

change that, so we get: hmode.

2.7 \ifhmode

As with \ifvmode this one has no argument and just tells if we're in vertical mode.

\vbox {

\noindent \ifhmode h\else v\fi mode

\par

\ifhmode h\else \noindent v\fi mode

}

You can use it for instance to trigger injection of code, or prevent that some content (or

command) is done more than once:

hmode

vmode

10

TEX primitives

2.8 \ifmmode

Math is something very TEX so naturally you can check if you're in math mode. here is

an example of using this test:

\def\enforcemath#1{\ifmmode#1\else$ #1 $\fi}

Of course in reality macros that do such things are more advanced than this one.

2.9 \ifinner

\def\ShowMode

{\ifhmode \ifinner inner \fi hmode

\else\ifvmode \ifinner inner \fi vmode

\else\ifmmode \ifinner inner \fi mmode

\else \ifinner inner \fi unset

\fi\fi\fi}

\ShowMode \ShowMode

\vbox{\ShowMode}

\hbox{\ShowMode}

\ShowMode

$$\ShowMode$$

The first line has two tests, where the first one changes the mode to horizontal simply

because a text has been typeset. Watch how display math is not inner.

vmode hmode

inner vmode

inner hmode

𝑖𝑛𝑛𝑒𝑟𝑚𝑚𝑜𝑑𝑒
𝑖𝑛𝑛𝑒𝑟𝑚𝑚𝑜𝑑𝑒

By the way, moving the \ifinner test outside the branches (to the top of the macro)

won't work because once the word inner is typeset we're no longer in vertical mode, if

we were at all.

11

TEX primitives

2.10 \ifvoid

A box is one of the basic concepts in TEX. In order to understand this primitive we

present four cases:

\setbox0\hbox{} \ifvoid0 void \else content \fi

\setbox0\hbox{123} \ifvoid0 void \else content \fi

\setbox0\hbox{} \box0 \ifvoid0 void \else content \fi

\setbox0\hbox to 10pt{} \ifvoid0 void \else content \fi

In the first case, we have a box which is empty but it's not void. It helps to know that

internally an hbox is actually an object with a pointer to a linked list of nodes. So, the

first two can be seen as:

hlist -> [nothing]

hlist -> 1 -> 2 -> 3 -> [nothing]

but in any case there is a hlist. The third case puts something in a hlist but then flushes

it. Now we have not even the hlist any more; the box register has become void. The

last case is a variant on the first. It is an empty box with a given width. The outcome

of the four lines (with a box flushed in between) is:

content

content

void

content

So, when you want to test if a box is really empty, you need to test also its dimensions,

which can be up to three tests, depending on your needs.

\setbox0\emptybox \ifvoid0 void\else content\fi

\setbox0\emptybox \wd0=10pt \ifvoid0 void\else content\fi

\setbox0\hbox to 10pt {} \ifvoid0 void\else content\fi

\setbox0\hbox {} \wd0=10pt \ifvoid0 void\else content\fi

Setting a dimension of a void (empty) box doesn't make it less void:

void

void

content

content

12

TEX primitives

2.11 \ifhbox

This test takes a box number and gives true when it is an hbox.

2.12 \ifvbox

This test takes a box number and gives true when it is an vbox. Both a \vbox and \vtop

are vboxes, the difference is in the height and depth and the baseline. In a \vbox the

last line determines the baseline

vbox or vtop

vtop or vbox

And in a \vtop the first line takes control:

vbox or vtop

vtop or vbox

but, once wrapped, both internally are just vlists.

2.13 \ifx

This test is actually used a lot in ConTEXt: it compares two token(list)s:

\ifx a b Y\else N\fi

\ifx ab Y\else N\fi

\def\A {a}\def\B{b}\ifx \A\B Y\else N\fi

\def\A{aa}\def\B{a}\ifx \A\B Y\else N\fi

\def\A {a}\def\B{a}\ifx \A\B Y\else N\fi

Here the result is: “NNNNY”. It does not expand the content, if you want that you need

to use an \edef to create two (temporary) macros that get compared, like in:

\edef\TempA{...}\edef\TempB{...}\ifx\TempA\TempB ...\else ...\fi

2.14 \ifeof

This test checks if a the pointer in a given input channel has reached its end. It is

also true when the file is not present. The argument is a number which relates to the

\openin primitive that is used to open files for reading.

13

𝜀-TEX primitives

2.15 \iftrue

It does what it says: always true.

2.16 \iffalse

It does what it says: always false.

2.17 \ifcase

The general layout of an \ifcase tests is as follows:

\ifcase<number>

when zero

\or

when one

\or

when two

\or

...

\else

when something else

\fi

As in other places a number is a sequence of signs followed by one of more digits

3 𝜀-TEX primitives

3.1 \ifdefined

This primitive was introduced for checking the existence of a macro (or primitive) and

with good reason. Say that you want to know if \MyMacro is defined? One way to do

that is:

\ifx\MyMacro\undefined

{\bf undefined indeed}

\fi

This results in: undefined indeed, but is this macro really undefined? When TEX scans

your source and sees a the escape character (the forward slash) it will grab the next

14

𝜀-TEX primitives

characters and construct a control sequence from it. Then it finds out that there is

nothing with that name and it will create a hash entry for a macro with that name but

with no meaning. Because \undefined is also not defined, these two macros have the

same meaning and therefore the \ifx is true. Imagine that you do this many times, with

different macro names, then your hash can fill up. Also, when a user defined \undefined

you're suddenly get a different outcome.

In order to catch the last problem there is the option to test directly:

\ifdefined\MyOtherMacro \else

{\bf also undefined}

\fi

This (or course) results in: also undefined, but the macro is still sort of defined (with

no meaning). The next section shows how to get around this.

3.2 \ifcsname

A macro is often defined using a ready made name, as in:

\def\OhYes{yes}

The name is made from characters with catcode letter which means that you cannot use

for instance digits or underscores unless you also give these characters that catcode,

which is not that handy in a document. You can however use \csname to define a control

sequence with any character in the name, like:

\expandafter\def\csname Oh Yes : 1\endcsname{yes}

Later on you can get this one with \csname:

\csname Oh Yes : 1\endcsname

However, if you say:

\csname Oh Yes : 2\endcsname

you won't get some result, nor a message about an undefined control sequence, but

the name triggers a define anyway, this time not with no meaning (undefined) but as

equivalent to \relax, which is why

\expandafter\ifx\csname Oh Yes : 2\endcsname\relax

{\bf relaxed indeed}

15

𝜀-TEX primitives

\fi

is the way to test its existence. As with the test in the previous section, this can deplete

the hash when you do lots of such tests. The way out of this is:

\ifcsname Oh Yes : 2\endcsname \else

{\bf unknown indeed}

\fi

This time there is no hash entry created and therefore there is not even an undefined

control sequence.

In LuaTEX there is an option to return false in case of a messy expansion during this

test, and in LuaMetaTEX that is default. This means that tests can be made quite robust

as it is pretty safe to assume that names that make sense are constructed from regular

characters and not boxes, font switches, etc.

3.3 \iffontchar

This test was also part of the 𝜀-TEX extensions and it can be used to see if a font has a

character.

\iffontchar\font`A

{\em This font has an A!}

\fi

And, as expected, the outcome is: “This font has an A!”. The test takes two arguments,

the first being a font identifier and the second a character number, so the next checks

are all valid:

\iffontchar\font `A yes\else nop\fi\par

\iffontchar\nullfont `A yes\else nop\fi\par

\iffontchar\textfont0`A yes\else nop\fi\par

In the perspective of LuaMetaTEX I considered also supporting \fontid but it got a bit

messy due to the fact that this primitive expands in a different way so this extension

was rejected.

3.4 \unless

You can negate the results of a test by using the \unless prefix, so for instance you can

replace:

16

𝜀-TEX primitives

\ifdim\scratchdimen=10pt

\dosomething

\else\ifdim\scratchdimen<10pt

\dosomething

\fi\fi

by:

\unless\ifdim\scratchdimen>10pt

\dosomething

\fi

An \unlessmakes little sense when used with \ifcase but contrary to the other engines

we don't error or it; we just give a warning. Some conditionals internally use a case so

there we can actually provide a variant:

\ifcase 1 \relax zero \or one \or two \else else \fi = one \par

\ifcase 2 \relax zero \or one \or two \else else \fi = two \par

\unless\ifcase 1 \relax zero \or one \or two \else else \fi % warning

\unless\ifcase 2 \relax zero \or one \or two \else else \fi % warning

\ifchkdim1pt\or yes \else nop \fi = yes \par

\ifchkdim2 \or nop \else yes \fi = yes \par

\unless\ifchkdim1pt\or nop \else yes \fi = yes \par

\unless\ifchkdim2 \or yes \else nop \fi = yes \par

The \ifchkdim, \ifchkdimension, \ifchknum, \ifchknumber and \ifparameter are

supported.

one = one

two = two

one two

yes = yes

yes = yes

yes = yes

yes = yes

17

LuaTEX primitives

4 LuaTEX primitives

4.1 \ifincsname

As it had no real practical usage uit might get dropped in LuaMetaTEX, so it will not be

discussed here.

4.2 \ifprimitive

As it had no real practical usage due to limitations, this one is not available in LuaMeta-

TEX so it will not be discussed here. If really needed you can use \ifflags.

4.3 \ifabsnum

This test is inherited from pdfTEX and behaves like \ifnum but first turns a negative

number into a positive one.

4.4 \ifabsdim

This test is inherited from pdfTEX and behaves like \ifdim but first turns a negative

dimension into a positive one.

4.5 \ifcondition

This is not really a test but in order to unstand that you need to know how TEX internally

deals with tests.

\ifdimen\scratchdimen>10pt

\ifdim\scratchdimen<20pt

result a

\else

result b

\fi

\else

result c

\fi

When we end up in the branch of “result a” we need to skip two \else branches after

we're done. The \if.. commands increment a level while the \fi decrements a level.

18

LuaTEX primitives

The \else needs to be skipped here. In other cases the true branch needs to be skipped

till we end up a the right \else. When doing this skipping, TEX is not interested in what

it encounters beyond these tokens and this skipping (therefore) goes real fast but it

does see nested conditions and doesn't interpret grouping related tokens.

A side effect of this is that the next is not working as expected:

\def\ifmorethan{\ifdim\scratchdimen>}

\def\iflessthan{\ifdim\scratchdimen<}

\ifmorethan10pt

\iflessthan20pt

result a

\else

result b

\fi

\else

result c

\fi

The \iflessthan macro is not seen as an \if... so the nesting gets messed up. The

solution is to fool the scanner in thinking that it is. Say we have:

\scratchdimen=25pt

\def\ifmorethan{\ifdim\scratchdimen>}

\def\iflessthan{\ifdim\scratchdimen<}

and:

\ifcondition\ifmorethan10pt

\ifcondition\iflessthan20pt

result a

\else

result b

\fi

\else

result c

\fi

When we expand this snippet we get: “result b” and no error concerning a failure

in locating the right \fi's. So, when scanning the \ifcondition is seen as a valid

19

LuaTEX primitives

\if... but when the condition is really expanded it gets ignored and the \ifmorethan

has better come up with a match or not.

In this perspective it is also worth mentioning that nesting problems can be avoided

this way:

\def\WhenTrue {something \iftrue ...}

\def\WhenFalse{something \iffalse ...}

\ifnum\scratchcounter>123

\let\next\WhenTrue

\else

\let\next\WhenFalse

\fi

\next

This trick is mentioned in The TEXbook and can also be found in the plain TEX format.

A variant is this:

\ifnum\scratchcounter>123

\expandafter\WhenTrue

\else

\expandafter\WhenFalse

\fi

but using \expandafter can be quite intimidating especially when there are multiple

in a row. It can also be confusing. Take this: an \ifcondition expects the code that

follows to produce a test. So:

\def\ifwhatever#1%

{\ifdim#1>10pt

\expandafter\iftrue

\else

\expandafter\iffalse

\fi}

\ifcondition\ifwhatever{10pt}

result a

\else

result b

\fi

20

LuaTEX primitives

This will not work! The reason is in the already mentioned fact that when we end up

in the greater than 10pt case, the scanner will happily push the \iftrue after the \fi,

which is okay, but when skipping over the \else it sees a nested condition without

matching \fi, which makes ity fail. I will spare you a solution with lots of nasty tricks,

so here is the clean solution using \ifcondition:

\def\truecondition {\iftrue}

\def\falsecondition{\iffalse}

\def\ifwhatever#1%

{\ifdim#1>10pt

\expandafter\truecondition

\else

\expandafter\falsecondition

\fi}

\ifcondition\ifwhatever{10pt}

result a

\else

result b

\fi

It will be no surprise that the two macros at the top are predefined in ConTEXt. It

might be more of a surprise that at the time of this writing the usage in ConTEXt of this

\ifcondition primitive is rather minimal. But that might change.

As a further teaser I'll show another simple one,

\def\HowOdd#1{\unless\ifnum\numexpr ((#1):2)*2\relax=\numexpr#1\relax}

\ifcondition\HowOdd{1}very \else not so \fi odd

\ifcondition\HowOdd{2}very \else not so \fi odd

\ifcondition\HowOdd{3}very \else not so \fi odd

This renders:

very odd

not so odd

very odd

The code demonstrates several tricks. First of all we use \numexpr which permits more

complex arguments, like:

\ifcondition\HowOdd{4+1}very \else not so \fi odd

21

LuaMetaTEX primitives

\ifcondition\HowOdd{2\scratchcounter+9}very \else not so \fi odd

Another trick is that we use an integer division (the :) which is an operator supported

by LuaMetaTEX.

5 LuaMetaTEX primitives

5.1 \ifnum and ifdim

These have been extended with a few more operators. For instance, we can use a

negation:

\ifnum 10 > 5 Y\else N\fi

\ifnum 10 !> 5 Y\else N\fi

Results in: YN. A bitwise comparison is possible too:

\ifnum "02 & 2 Y\else N\fi

\ifnum "02 & 4 Y\else N\fi

\ifnum "02 !& 8 Y\else N\fi

yields: YNY. You can also use the Unicode variants ∈, ∉, ≠, ≤, ≥, ≰, and ≱.

5.2 \iffloat

This is a test for a float, much like a test for a dimen without unit.

5.3 \ifabsfloat

This is a test for a float, much like a test for a dimen without unit.

5.4 \ifintervalnum

This is a test for equality of two numbers within an interval, as in:

\ifintervalnum 1 2 1 Y\else N\fi

\ifintervalnum 1 3 1 Y\else N\fi

\ifintervalnum 100 102 1 Y\else N\fi

\ifintervalnum 100 102 3 Y\else N\fi

which results in: YNNY.

22

LuaMetaTEX primitives

5.5 \ifintervaldim

This is a test for equality of two dimensions within an interval, as in:

\ifintervaldim 1pt 2pt 1pt Y\else N\fi

\ifintervaldim 1pt 3pt 1pt Y\else N\fi

\ifintervaldim 100pt 102pt 1pt Y\else N\fi

\ifintervaldim 100pt 102pt 3pt Y\else N\fi

We get: YNNY.

5.6 \ifintervalfloat

This is a test for a float, much like a test for a dimen without unit.

5.7 \ifdimexpression

This is a boolean checker so the comparison is done as part of the expression, as in:

\ifdimexpression{10pt > (4pt + 8pt)}Y\else N\fi

5.8 \ifnumexpression

This is a boolean checker so the comparison is done as part fo the expression, as in:

\ifnumexpression{10 > (4 + 8)}Y\else N\fi

5.9 \ifcmpnum

This one is part of s set of three tests that all are a variant of a \ifcase test. A simple

example of the first test is this:

\ifcmpnum 123 345 less \or equal \else more \fi

The test scans for two numbers, which of course can be registers or expressions, and

sets the case value to 0, 1 or 2, which means that you then use the normal \or and

\else primitives for follow up on the test.

5.10 \ifchknum

This test scans a number and when it's okay sets the case value to 1, and otherwise to

2. So you can do the next:

23

LuaMetaTEX primitives

\ifchknum 123\or good \else bad \fi

\ifchknum bad\or good \else bad \fi

An error message is suppressed and the first \or can be seen as a sort of recovery

token, although in fact we just use the fast scanner mode that comes with the \ifcase:

because the result is 1 or 2, we never see invalid tokens.

In order to avoid another scan the a valid result it is made available in \lastchknumber.

5.11 \ifchknumber

This one is a more rigorous variant of \ifchknum and doesn't like trailing non numeric

crap.

5.12 \ifchknumexpr

This test goes a bit further and accepts an expression.

\ifchknumexpr 123 + 45\or good \else bad \fi

As with the other checkers, if there is a valid result it is available in \lastchknumber.

5.13 \ifnumval

A sort of combination of the previous two is \ifnumval which checks a number but also

if it's less, equal or more than zero:

\ifnumval 123\or less \or equal \or more \else error \fi

\ifnumval bad\or less \or equal \or more \else error \fi

You can decide to ignore the bad number or do something that makes more sense. Often

the to be checked value will be the content of a macro or an argument like #1.

5.14 \ifcmpdim

This test is like \ifcmpnum but for dimensions.

5.15 \ifchkdim

This test is like \ifchknum but for dimensions. The last checked value is available as

\lastchknumber.

24

LuaMetaTEX primitives

5.16 \ifchkdimension

This one is a more rigorous variant of \ifchkdim and doesn't like trailing rubish.

5.17 \ifchkdimexpr

This test is like \ifchknumexpr but for dimensions. The last checked value is available

as \lastchkdimension.

5.18 \ifdimval

This test is like \ifnumval but for dimensions. The last checked value is available as

\lastchkdim

5.19 \iftok

Although this test is still experimental it can be used. What happens is that two to be

compared ‘things’ get scanned for. For each we first gobble spaces and \relax tokens.

Then we can have several cases:

1. When we see a left brace, a list of tokens is scanned upto the matching right brace.

2. When a reference to a token register is seen, that register is taken as value.

3. When a reference to an internal token register is seen, that register is taken as value.

4. When a macro is seen, its definition becomes the to be compared value.

5. When a number is seen, the value of the corresponding register is taken

An example of the first case is:

\iftok {abc} {def}%

...

\else

...

\fi

The second case goes like this:

\iftok\scratchtoksone\scratchtokstwo

...

\else

...

\fi

25

LuaMetaTEX primitives

Case one and four mixed:

\iftok{123}\TempX

...

\else

...

\fi

The last case is more a catch: it will issue an error when no number is given. Eventually

that might become a bit more clever (depending on our needs.)

5.20 \ifzeronum, \ifzerodim, \ifzerofloat

The names of these three tells what they do: checking for a zero value.

(\ifzerodim 10pt\norelax A\orelse\ifzerodim 0pt\norelax B\else C\fi)

(\ifzeronum 10 \norelax A\orelse\ifzeronum 0 \norelax B\else C\fi)

(\ifzerofloat 10.0\norelax A\orelse\ifzerofloat 0.0\norelax B\else C\fi)

Here we use the \norelax to get rid of trailing spaces: (B) (B) (B).

5.21 \ifhaschar, \ifhastok, \ifhastoks,\ifhasxtoks

These checkers can be used to identify a (sequence) of token(s) in a given token list.

Their working can best be shown with a few examples:

\ifhaschar c {abcd}Y\else N\fi

\ifhastok c {abcd}Y\else N\fi

\ifhastoks {c}{abcd}Y\else N\fi

\ifhasxtoks {c}{abcd}Y\else N\fi

\def\abcd{abcd}

\ifhaschar c {\abcd}Y\else N\fi

\ifhastok c {\abcd}Y\else N\fi

\ifhastoks {c}{\abcd}Y\else N\fi

\ifhasxtoks {c}{\abcd}Y\else N\fi

\ifhaschar c {a{bc}d}Y\else N\fi

\ifhastok c {a{bc}d}Y\else N\fi

\ifhastoks {c}{a{bc}d}Y\else N\fi

\ifhasxtoks {c}{a{bc}d}Y\else N\fi

26

LuaMetaTEX primitives

\def\abcd{a{bc}d}

\ifhaschar c {\abcd}Y\else N\fi

\ifhastok c {\abcd}Y\else N\fi

\ifhastoks {c}{\abcd}Y\else N\fi

\ifhasxtoks {c}{\abcd}Y\else N\fi

YYYY

NNNY

NYYY

NNNY

The \ifhaschar test will not descend into a braced sublist. The x variants expand the

list before comparison.

5.22 \ifcstok

There is a subtle difference between this one and \iftok: spaces and \relax tokens are

skipped but nothing gets expanded. So, when we arrive at the to be compared ‘things’

we look at what is there, as-is.

5.23 \iffrozen

This is an experimental test. Commands can be defined with the \frozen prefix and

this test can be used to check if that has been the case.

5.24 \ifprotected

Commands can be defined with the \protected prefix (or in ConTEXt, for historic rea

sons, with \unexpanded) and this test can be used to check if that has been the case.

5.25 \ifarguments

This conditional can be used to check how many arguments were matched. It only

makes sense when used with macros defined with the \tolerant prefix and/or when

the sentinel \ignorearguments after the arguments is used. More details can be found

in the lowlevel macros manual.

27

LuaMetaTEX primitives

5.26 \ifrelax

The following tests all return the same: YYY; it is a shortcut for \ifx ... \relax that

looks nicer in code.

\ifrelax\relax Y\else N\fi

\ifrelax\norelax Y\else N\fi

\expandafter\ifrelax\csname ReLaX\endcsname Y\else N\fi

5.27 \ifempty

This is again a shortcut, this time for \ifx ...\empty assuming that \empty is defined

as being nothing. Instead of a token you can also pass a list, so here we get YNY.

\ifempty{} Y\else N\fi

\ifempty{!} Y\else N\fi

\ifempty\empty Y\else N\fi

5.28 \iflastnamedcs

This test is part of the \csname repertoire and uses the last valid result from such a

command.

\def\Hello{upper}

\def\hello{lower}

\ifcsname Hello\endcsname

\iflastnamedcs\hello

world

\orelse\iflastnamedcs\Hello

World

\fi

\fi

Here the ‘Hello’ test result in ‘World’. It is an example of a follow up test, most likely

used in user interfacing.

5.29 \ifboolean

Another new one is the following: it tests a number for being zero or not. As with any

primitive that scans for a number, it accepts a braced expression too.

28

LuaMetaTEX primitives

(\ifboolean 0 T\else F\fi)

(\ifboolean 1 T\else F\fi)

(\ifboolean {(2 * 4) < 5} T\else F\fi)

(\ifboolean \dimexpression{(1em > 20pt) or (1ex > 15pt)} T\else F\fi)

(\ifboolean \dimexpression{(1em > 3pt) and (1ex < 3pt)} T\else F\fi)

We get: (F) (T) (F) (F) (F).

5.30 \iflist

The \ifvoid test doesn't really test for a box being empty, which is why we have an

additional primitive. Compare the following:

\setbox0\hbox{}

\setbox2\hbox{!}

\setbox4\emptybox % \box\voidbox

\setbox8\box6

\wd0 10pt \wd2 10pt \wd4 10pt \wd6 10pt

[\ifvoid0 Y\else N\fi \iflist0 Y\else N\fi \the\wd0] % empty hbox

[\ifvoid2 Y\else N\fi \iflist2 Y\else N\fi \the\wd2] % hbox with content

[\ifvoid4 Y\else N\fi \iflist4 Y\else N\fi \the\wd4] % no box

[\ifvoid6 Y\else N\fi \iflist6 Y\else N\fi \the\wd6] % no box

The result demonstrates that we check if there is any content at all, independent of

dimensions or the presence of a wrapping list node.

[NN10.0pt] [NY10.0pt] [YN0.0pt] [YN0.0pt]

5.31 \ifcramped

This test relates to math and in particular to four of the eight states:

\im {

\sqrt

{\ifcramped\mathstyle y\else n\fi}

^ {\ifcramped\mathstyle y\else n\fi}

_ {\ifcramped\mathstyle y\else n\fi}

}

29

LuaMetaTEX primitives

Because a math formula is first read and then processed in several passes you need to

be aware of this state not always being easily predictable because there can be a delay

between that read and successive treatments.

√

𝑛
𝑛
𝑦

5.32 \ifmathparameter

The next example demonstrates what this test provides:

[\ifmathparameter\Umathextrasubspace \displaystyle zero\or set\else

unset\fi]

[\ifmathparameter\Umathaccentbaseheight\displaystyle zero\or set\else

unset\fi]

[\ifmathparameter\Umathaccentbasedepth \displaystyle zero\or set\else

unset\fi]

There are three possible outcomes; here we get: [zero] [set] [set]. In LuaMetaTEX we

have more math parameters than in LuaTEX, and some are set in font specific so called

‘goodie’ files.

5.33 \ifmathstyle

Here you need to keep in mind that you test the style that is set when TEX scans for

formula. Processing happens afterwards and then styles can change.

{\ifmathstyle D\or D'\or T\or T'\or S\or S'\or SS\or SS'\else ?\fi}

\im{\ifmathstyle D\or D'\or T\or T'\or S\or S'\or SS\or SS'\else ?\fi}

\dm{\ifmathstyle D\or D'\or T\or T'\or S\or S'\or SS\or SS'\else ?\fi}

We get: ? 𝑇 𝐷. The odd values are cramped.

5.34 \ifinalignment

This test is an experimental one:

\halign \bgroup

\aligncontent

\aligntab

\aligncontent

30

LuaMetaTEX primitives

\cr

one \aligntab \ifinalignment two\else three\fi \cr

\noalign{\ifinalignment yes\else no\fi}

one \aligntab \hbox{\ifinalignment two\else three\fi} \cr

\egroup

\hbox{\ifinalignment two\else three\fi}

We get:

one two

yes

one two

three

5.35 \ifinsert

This primitive checks if an insert box has content. Usage depends on the macro package

so for instance in ConTEXt, after \footnote{A note.} you can actually check it with:

\setupheadertexts[\ifinsert\namedinsertionnumber{footnote} Y\else N\fi]

You pass the number of a insert class and in this example the content, set by the page

builder, hasn't yet been flushed.

5.36 \ifflags

This one related to interfacing. When a macro is defined, one can apply several prefixes

to that macro. Some of these prefixes result in a specific kind of macro, for instance

a protected, tolerant, tolerant protected, or regular macro. When a macro is defined

global, its (internal) level value indicates that. In addition macros, or actually any con

trol sequence, also the built-in ones, can have a set of flags. Some, have consequences

in the engine, so for instance an untraced macro will present itself as a primitive, with

out details that clutter a log. Other flags get meaning when the overload protection

mechanisms are enabled.

Testing flags can give some insight but in ConTEXt there is little reason to use this test

other than for illustrative purposes. Take this definition

\global\protected\def\Foo{Foo}

This macro is internally represented as follows; here we used \meaningasis:

31

LuaMetaTEX primitives

\global \protected \def \Foo {Foo}

When we use \meaning we get:

protected macro:Foo

With \meaningfull we get:

global protected macro:Foo

Here is how you can test what properties and flags are set.

\ifflags\Foo\global global \fi

\ifflags\Foo\protected protected \fi

\ifflags\Foo\tolerant tolerant \fi

We only show a few tests here:

global protected

Instead of a prefix you can also pass a number:

\ifflags\relax\primitiveflagcode primitive \fi

\ifflags\relax\permanentflagcode permanent \fi

primitive

In ConTEXt many macros are defined as permanent which in terms of overload protec

tion has the same impact. Relevant flag values are available in tex.getflagvalues()

but in ConTEXt we prefer predefined constants:

\aliasedflagcode, \conditionalflagcode, \constantflagcode, \deferredflag

code, \frozenflagcode, \globalflagcode, \immediateflagcode, \immutableflag

code, \inheritedflagcode, \instanceflagcode, \mutableflagcode, \noaligned

flagcode, \overloadedflagcode, \permanentflagcode, \primitiveflagcode, \pro

tectedflagcode, \semiprotectedflagcode, \tolerantflagcode, \untracedflag

code, \valueflagcode

5.37 \ifparameters

This is an \ifcase where the number is the number of parameters passed to the current

macro. Of course, when used in a macro one should be aware of the fact that another

macro call will change this number.

32

LuaMetaTEX primitives

5.38 \ifparameter

This test checks if a parameter has been set, and it's used as follows:

\ifparameter#4\or set\else unset\fi

because #4 is actually a reference it refers to the parameter in the current macro and is

not influences by nested macro calls which makes if more reliable than a \ifparameters

test.

5.39 \orelse

This it not really a test primitive but it does act that way. Say that we have this:

\ifdim\scratchdimen>10pt

case 1

\else\ifdim\scratchdimen<20pt

case 2

\else\ifcount\scratchcounter>10

case 3

\else\ifcount\scratchcounter<20

case 4

\fi\fi\fi\fi

A bit nicer looks this:

\ifdim\scratchdimen>10pt

case 1

\orelse\ifdim\scratchdimen<20pt

case 2

\orelse\ifcount\scratchcounter>10

case 3

\orelse\ifcount\scratchcounter<20

case 4

\fi

We stay at the same level. Sometimes a more flat test tree had advantages but if you

think that it gives better performance then you will be disappointed. The fact that we

stay at the same level is compensated by a bit more parsing, so unless you have millions

such cases (or expansions) it might make a bit of a difference. As mentioned, I'm a bit

sensitive for how code looks so that was the main motivation for introducing it. There

is a companion \orunless continuation primitive.

33

For the brave

A rather neat trick is the definition of \quitcondition:

\def\quitcondition{\orelse\iffalse}

This permits:

\ifdim\scratchdimen>10pt

case 1a

\quitcondition

case 4b

\fi

where, of course, the quitting normally is the result of some intermediate extra test.

But let me play safe here: beware of side effects.

5.40 \orunless

This is the negated variant of \orelse.

6 For the brave

6.1 Full expansion

If you don't understand the following code, don't worry. There is seldom much reason

to go this complex but obscure TEX code attracts some users so . . .

When you have a macro that has for instance assignments, and when you expand that

macro inside an \edef, these assignments are not actually expanded but tokenized. In

LuaMetaTEX there is a way to apply these assignments without side effects and that

feature can be used to write a fully expandable user test. For instance:

\def\truecondition {\iftrue}

\def\falsecondition{\iffalse}

\def\fontwithidhaschar#1#2%

{\beginlocalcontrol

\scratchcounter\numexpr\fontid\font\relax

\setfontid\numexpr#1\relax

\endlocalcontrol

\iffontchar\font\numexpr#2\relax

\beginlocalcontrol

34

For the brave

\setfontid\scratchcounter

\endlocalcontrol

\expandafter\truecondition

\else

\expandafter\falsecondition

\fi}

The \iffontchar test doesn't handle numeric font id, simply because at the time it was

added to 𝜀-TEX, there was no access to these id's. Now we can do:

\edef\foo{\fontwithidhaschar{1} {75}yes\else nop\fi} \meaning\foo

\edef\foo{\fontwithidhaschar{1}{999}yes\else nop\fi} \meaning\foo

[\ifcondition\fontwithidhaschar{1} {75}yes\else nop\fi]

[\ifcondition\fontwithidhaschar{1}{999}yes\else nop\fi]

These result in:

macro:yes

macro:nop

[yes]

[nop]

If you remove the \immediateassignment in the definition above then the typeset re

sults are still the same but the meanings of \foo look different: they contain the assign

ments and the test for the character is actually done when constructing the content of

the \edef, but for the current font. So, basically that test is now useless.

6.2 User defined if's

There is a \newif macro that defines three other macros:

\newif\ifOnMyOwnTerms

After this, not only \ifOnMyOwnTerms is defined, but also:

\OnMyOwnTermstrue

\OnMyOwnTermsfalse

These two actually are macros that redefine \ifOnMyOwnTerms to be either equivalent

to \iftrue and \iffalse. The (often derived from plain TEX) definition of \newif is a

35

Relaxing

bit if a challenge as it has to deal with removing the if in order to create the two extra

macros and also make sure that it doesn't get mixed up in a catcode jungle.

In ConTEXt we have a variant:

\newconditional\MyConditional

that can be used with:

\settrue\MyConditional

\setfalse\MyConditional

and tested like:

\ifconditional\MyConditional

...

\else

...

\fi

This one is cheaper on the hash and doesn't need the two extra macros per test. The

price is the use of \ifconditional, which is not to confused with \ifcondition (it has

bitten me already a few times).

7 Relaxing

When TEX scans for a number or dimension it has to check tokens one by one. On the

case of a number, the scanning stops when there is no digit, in the case of a dimension

the unit determine the end of scanning. In the case of a number, when a token is not a

digit that token gets pushed back. When digits are scanned a trailing space or \relax

is pushed back. Instead of a number of dimension made from digits, periods and units,

the scanner also accepts registers, both the direct accessors like \count and \dimen

and those represented by one token. Take these definitions:

\newdimen\MyDimenA \MyDimenA=1pt \dimen0=\MyDimenA

\newdimen\MyDimenB \MyDimenB=2pt \dimen2=\MyDimenB

I will use these to illustrate the side effects of scanning. Watch the spaces in the result.

First I show what effect we want to avoid. When second argument contains a number

(digits) the zero will become part of it so we actually check \dimen00 here.

\def\whatever#1#2%

36

Relaxing

{\ifdim#1=#20\else1\fi}

\whatever{1pt}{2pt} [macro:1]

\whatever{1pt}{1pt} [macro:0]

\whatever{\dimen 0}{\dimen 2} [macro:1]

\whatever{\dimen 0}{\dimen 0} [macro:]

\whatever\MyDimenA\MyDimenB [macro:1]

\whatever\MyDimenA\MyDimenB [macro:1]

The solution is to add a space but watch how that one can end up in the result:

\def\whatever#1#2%

{\ifdim#1=#2 0\else1\fi}

\whatever{1pt}{2pt} [macro:1]

\whatever{1pt}{1pt} [macro:0]

\whatever{\dimen 0}{\dimen 2} [macro:1]

\whatever{\dimen 0}{\dimen 0} [macro:0]

\whatever\MyDimenA\MyDimenB [macro:1]

\whatever\MyDimenA\MyDimenB [macro:1]

A variant is using \relax and this time we get this token retained in the output.

\def\whatever#1#2%

{\ifdim#1=#2\relax0\else1\fi}

\whatever{1pt}{2pt} [macro:1]

\whatever{1pt}{1pt} [macro:\relax 0]

\whatever{\dimen 0}{\dimen 2} [macro:1]

\whatever{\dimen 0}{\dimen 0} [macro:\relax 0]

\whatever\MyDimenA\MyDimenB [macro:1]

\whatever\MyDimenA\MyDimenB [macro:1]

A solution that doesn't have side effects of forcing the end of a number (using a space or

\relax is one where we use expressions. The added overhead of scanning expressions

is taken for granted because the effect is what we like:

\def\whatever#1#2%

{\ifdim\dimexpr#1\relax=\dimexpr#2\relax0\else1\fi}

\whatever{1pt}{2pt} [macro:1]

\whatever{1pt}{1pt} [macro:0]

\whatever{\dimen 0}{\dimen 2} [macro:1]

37

Relaxing

\whatever{\dimen 0}{\dimen 0} [macro:0]

\whatever\MyDimenA\MyDimenB [macro:1]

\whatever\MyDimenA\MyDimenB [macro:1]

Just for completeness we show a more obscure trick: this one hides assignments to

temporary variables. Although performance is okay, it is the least efficient one so far.

\def\whatever#1#2%

{\beginlocalcontrol

\MyDimenA#1\relax

\MyDimenB#2\relax

\endlocalcontrol

\ifdim\MyDimenA=\MyDimenB0\else1\fi}

\whatever{1pt}{2pt} [macro:1]

\whatever{1pt}{1pt} [macro:0]

\whatever{\dimen 0}{\dimen 2} [macro:1]

\whatever{\dimen 0}{\dimen 0} [macro:0]

\whatever\MyDimenA\MyDimenB [macro:1]

\whatever\MyDimenA\MyDimenB [macro:1]

It is kind of a game to come up with alternatives but for sure those involve dirty tricks

and more tokens (and runtime). The next can be considered a dirty trick too: we use a

special variant of \relax. When a number is scanned it acts as relax, but otherwise it

just is ignored and disappears.

\def\whatever#1#2%

{\ifdim#1=#2\norelax0\else1\fi}

\whatever{1pt}{2pt} [macro:1]

\whatever{1pt}{1pt} [macro:0]

\whatever{\dimen 0}{\dimen 2} [macro:1]

\whatever{\dimen 0}{\dimen 0} [macro:0]

\whatever\MyDimenA\MyDimenB [macro:1]

\whatever\MyDimenA\MyDimenB [macro:1]

38

Colofon

7 Colofon

Author Hans Hagen

ConTEXt 2025.02.12 08:44

LuaMetaTEX 2.11.06 20250218

Support www.pragma-ade.com

contextgarden.net

ntg-context@ntg.nl

